Supporting Information for "Tautomerization in the Formation and Collision-Induced Dissociation of Alkali Metal Ion-Cytosine Complexes" by Zhibo Yang and M. T. Rodgers*

Table 1S. Vibrational Frequencies and Average Vibrational Energies of Cytosine and M⁺(cytosine)^a

Species	E_{int} , eV	Vibrational Frequencies ^a , cm ⁻¹				
C ₁	0.14 (0.01)	-508 , -51 , 125, 246, 301, 364, 470, 493, 527, 553, 616, 646, 709, 765, 822, 893, 957, 1049, 1097, 1180, 1283, 1340, 1413, 1510, 1587, 1640, 1751, 1847, 3280, 3313, 3658, 3689, 3800				
C ₂	0.14 (0.01)	-376 , 179, 212, 329, 430, 481, 483, 543, 545, 581, 650, 725, 750, 771, 916, 965, 979, 1071, 1111, 1237, 1296, 1331, 1394, 1456, 1509, 1595, 1610, 1651, 3110, 3146, 3519, 3585, 3654				
C ₃	0.14 (0.01)	-389 , 178, 215, 328, 432, 467, 483, 529, 539, 588, 646, 724, 750, 771, 924, 963, 982, 1068, 1109, 1229, 1301, 1342, 1393, 1445, 1506, 1603, 1608, 1649, 3107, 3146, 3522, 3590, 3655				
C ₄	0.15 (0.01)	106, 136, 341, 361, 494, 496, 519, 550, 610, 642, 686, 712, 752, 815, 868, 953, 965, 1078, 1135, 1204, 1299, 1375, 1386, 1421, 1484, 1623, 1701, 1797, 3145, 3166, 3388, 3489, 3535				
C ₅	0.15 (0.01)	110, 134, 346, 359, 490, 496, 517, 542, 567, 623, 692, 734, 758, 823, 871, 959, 961, 1061, 1134, 1193, 1280, 1376, 1392, 1413, 1475, 1634, 1703, 1794, 3153, 3187, 3343, 3486, 3536				
C ₆	0.14 (0.02)	-424 , 129, 186, 326, 330, 425, 497, 524, 577, 582, 637, 692, 734, 775, 907, 948, 1004, 1051, 1071, 1144, 1306, 1363, 1398, 1491, 1602, 1630, 1663, 1770, 3080, 3166, 3474, 3526, 3648				
$Li^+(C_1)$	0.17 (0.02)	126, 175, 203, 236, 339, 373, 398, 472, 531, 543, 567, 596, 644, 682, 730, 749, 778, 906, 949, 976, 1105, 1122, 1223, 1320, 1372, 1437, 1526, 1550, 1636, 1678, 1690, 3164, 3177, 3474, 3489, 3612				
$Li^+(C_2)$	0.19 (0.02)	91, 164, 195, 238, 264, 381, 425, 443, 448, 477, 515, 547, 592, 644, 722, 762, 788, 942, 976, 977, 1069, 1119, 1208, 1282, 1340, 1409, 1432, 1524, 1590, 1633, 1680, 3146, 3161, 3500, 3571, 3622				
Li ⁺ (C ₃)	0.19 (0.02)	111, 192, 227, 260, 311, 360, 420, 430, 435, 499, 538, 572, 589, 656, 726, 774, 787, 927, 971, 984, 1067, 1126, 1201, 1291, 1334, 1404, 1466, 1541, 1575, 1637, 1677, 3148, 3162, 3486, 3581, 3613				
Li ⁺ (C ₄)	0.19 (0.02)	73, 144, 147, 182, 372, 381, 462, 512, 553, 599, 604, 612, 649, 696, 713, 757, 779, 913, 964, 984, 1105, 1215, 1224, 1294, 1369, 1392, 1462, 1537, 1610, 1683, 1824, 3159, 3176, 3392, 3484, 3492				
$\operatorname{Li}^{+}(C_5)$	0.19 (0.02)	81, 95, 120, 188, 352, 370, 463, 500, 513, 521, 602, 635, 651, 689, 756, 784, 838, 889, 962, 996, 1045, 1114, 1204, 1272, 1373, 1392, 1442, 1509, 1641, 1702, 1716, 3174, 3189, 3371, 3475, 3517				
$Li^+(C_6)$	0.18 (0.02)	128, 182, 210, 250, 253, 358, 415, 436, 461, 523, 571, 603, 627, 675, 728, 754, 790, 951, 955, 1003, 1056, 1134, 1235, 1326, 1350, 1405, 1530, 1597, 1625, 1685, 1689, 3135, 3175, 3443, 3485, 3601				

Species	E_{int} , eV	Vibrational Frequencies ^a , cm ⁻¹
$Na^+(C_1)$	0.20 (0.02)	74, 125, 160, 197, 263, 271, 373, 394, 518, 535, 546, 573, 641, 680, 727, 742, 775, 905, 941, 975, 1101, 1120, 1222, 1300, 1367, 1434, 1519, 1554, 1633, 1682, 1696, 3162, 3177, 3483, 3498, 3622
$Na^+(C_2)$	0.20 (0.02)	59, 147, 187, 194, 236, 243, 360, 431, 480, 506, 511, 542, 584, 682, 762, 764, 804, 966, 968, 972, 1060, 1104, 1202, 1263, 1311, 1384, 1406, 1497, 1557, 1610, 1641, 3106, 3125, 3486, 3570, 3595
$Na^+(C_3)$	0.20 (0.02)	65, 145, 184, 213, 237, 241, 348, 428, 476, 498, 525, 552, 585, 647, 714, 771, 775, 916, 973, 978, 1068, 1122, 1218, 1291, 1336, 1407, 1455, 1532, 1579, 1628, 1670, 3138, 3159, 3492, 3575, 3620
Na ⁺ (C ₄)	0.20 (0.02)	48, 81, 148, 179, 242, 391, 395, 510, 547, 551, 582, 600, 691, 706, 726, 760, 778, 944, 949, 968, 1086, 1184, 1199, 1265, 1356, 1375, 1441, 1498, 1585, 1643, 1807, 3128, 3143, 3364, 3482, 3488
$Na^+(C_5)$	0.20 (0.02)	54, 59, 120, 177, 249, 358, 368, 499, 507, 515, 574, 594, 632, 694, 754, 769, 836, 887, 958, 988, 1048, 1115, 1202, 1277, 1373, 1394, 1444, 1486, 1642, 1711, 1720, 3172, 3189, 3366, 3482, 3525
$Na^+(C_6)$	0.20 (0.02)	76, 145, 167, 177, 203, 243, 361, 416, 424, 517, 546, 596, 624, 672, 724, 748, 787, 943, 952, 1006, 1057, 1126, 1211, 1325, 1351, 1403, 1523, 1603, 1623, 1681, 1700, 3125, 3175, 3450, 3492, 3609
$K^+(C_1)$	0.21 (0.02)	50, 86, 154, 173, 200, 222, 367, 390, 511, 534, 537, 568, 642, 682, 726, 740, 773, 903, 936, 973, 1096, 1119, 1220, 1289, 1363, 1431, 1513, 1558, 1630, 1681, 1712, 3160, 3175, 3488, 3504, 3629
$K^+(C_2)$	0.19 (0.02)	-51 , 8, 171, 191, 225, 353, 430, 472, 503, 542, 546, 581, 685, 765, 766, 801, 963, 966, 970, 1060, 1104, 1211, 1265, 1310, 1381, 1412, 1494, 1558, 1607, 1636, 3101, 3122, 3490, 3566, 3601
$K^{+}(C_{3})$	0.21 (0.02)	50, 112, 148, 164, 186, 225, 345, 430, 496, 509, 521, 548, 585, 647, 717, 769, 772, 919, 974, 976, 1069, 1119, 1229, 1291, 1338, 1407, 1446, 1528, 1583, 1624, 1667, 3130, 3158, 3497, 3574, 3626
$K^+(C_4)$	0.20 (0.02)	47(2), 115, 175, 175, 362, 363, 500, 503, 520, 570, 625, 662, 698, 737, 763, 840, 880, 965, 980, 1063, 1123, 1211, 1311, 1374, 1396, 1451, 1479, 1630, 1707, 1738, 3160, 3175, 3406, 3481, 3531
$K^+(C_5)$	0.21 (0.02)	47, 51, 120, 171, 173, 359, 366, 499(2), 517, 563, 588, 631, 701, 753, 766, 835, 886, 958, 983, 1050, 1117, 1201, 1279, 1374, 1396, 1445, 1472, 1641, 1711, 1732, 3169, 3188, 3360, 3484, 3530
K ⁺ (C ₆)	0.22 (0.02)	34, 64, 108, 166, 180, 197, 353, 409, 422, 512, 540, 592, 621, 670, 721, 745, 786, 937, 954, 1008, 1057, 1118, 1193, 1323, 1353, 1401, 1518, 1609, 1622, 1678, 1715, 3115, 3174, 3454, 3497, 3615
^a Obtained	d from vibratio	onal analyses of the optimized geometries as described in the text and scaled by 0.9646. The
imaginar	y rrequencies	(indicated in boldface) correspond to the out-of-plane vibration(s) of the amino group.

Table 1S (continued). Vibrational Frequencies and Average Vibrational Energies of Cytosine and M⁺(cytosine)^a

Species	E_{int} , eV	Vibrational Frequencies ^a , cm ⁻¹				
Li ⁺ (C)-TS _{1,2}	0.18 (0.02)	-1832 , 108, 191, 194, 205, 323, 374, 408, 454, 513, 552, 571, 631, 642, 694, 763, 810, 924, 978, 982, 999, 1098, 1151, 1308, 1330, 1414, 1486, 1530, 1586, 1627, 1670, 1980, 3158, 3170, 3488, 3611				
Li ⁺ (C)-TS _{2,3}	0.17 (0.02)	-137 , 85, 178, 223, 318, 323, 434, 450, 520, 534, 541, 557, 591, 660, 727, 756, 800, 938, 965, 970, 1063, 1112, 1225, 1248, 1323, 1379, 1450, 1524, 1557, 1619, 1667, 3143, 3158, 3487, 3541, 3614				
Li ⁺ (C)-TS _{3,6}	0.18 (0.02)	-1827 , 110, 200, 212, 218, 348, 350, 418, 431, 516, 545, 602, 622, 645, 688, 762, 778, 932, 976, 988, 988, 1131, 1151, 1282, 1349, 1419, 1483, 1536, 1601, 1621, 1684, 1986, 3149, 3164, 3481, 3603				
Li ⁺ (C)-TS _{1,4}	0.18 (0.02)	-1853 , 80, 87, 132, 204, 378, 382, 468, 547, 564, 583, 615, 643, 662, 698, 751, 816, 902, 971, 1026, 1071, 1076, 1132, 1226, 1373, 1376, 1439, 1470, 1604, 1691, 1702, 1986, 3163, 3184, 3482, 3501				
Li ⁺ (C)-TS _{4,5}	0.16 (0.02)	-993 , 114, 130, 156, 251, 393, 444, 501, 549, 557, 692, 703, 730, 767, 802, 811, 930, 955, 1017, 1063, 1071, 1145, 1212, 1319, 1472, 1486, 1533, 1572, 1768, 1796, 1979, 3299, 3322, 3646, 3677, 3902				
Na ⁺ (C)-TS _{1,2}	0.17 (0.02)	-1826 , 76, 101, 211, 222, 259, 397, 405, 453, 571, 588, 610, 688, 726, 824, 865, 869, 1047, 1054, 1097, 1126, 1178, 1216, 1336, 1397, 1501, 1582, 1638, 1691, 1745, 1769, 2168, 3297, 3314, 3701, 3819				
$Na^+(C)$ - $TS_{2,3}$	0.18 (0.02)	-83 , 54, 173, 202, 290, 331, 356, 435, 468, 518, 540, 544, 590, 662, 735, 762, 796, 938, 968, 974, 1071, 1115, 1229, 1265, 1325, 1386, 1446, 1519, 1565, 1618, 1664, 3139, 3156, 3484, 3554, 3609				
Na ⁺ (C)-TS _{3,6}	0.19 (0.02)	-1820 , 68, 132, 194, 201, 230, 297, 351, 420, 505, 537, 597, 623, 645, 689, 757, 777, 930, 974, 987, 1005, 1127, 1153, 1282, 1346, 1403, 1488, 1530, 1610, 1617, 1681, 2010, 3142, 3164, 3488, 3610				
Na ⁺ (C)-TS _{1,4}	0.19 (0.02)	-1857 , 44, 57, 129, 195, 264, 374, 386, 524, 555, 566, 582, 633, 642, 698, 745, 784, 902, 968, 1023, 1063, 1079, 1130, 1224, 1374, 1379, 1421, 1470, 1605, 1686, 1715, 1991, 3160, 3184, 3485, 3506				
Na ⁺ (C)-TS _{4,5}	0.18 (0.02)	-1011 , 74(2), 158, 237, 299, 399, 445, 545, 555, 619, 677, 691, 761, 782, 797, 927, 951, 1001, 1058, 1076, 1145, 1211, 1319, 1477, 1484, 1524, 1560, 1780, 1794, 1971, 3294, 3320, 3655, 3686, 3915				
K ⁺ (C)-TS _{1,2}	0.20 (0.02)	-1821 , 47, 80, 164, 184, 188, 214, 373, 405, 496, 548, 554, 636, 642, 699, 755, 816, 923, 971, 981, 1030, 1094, 1150, 1297, 1326, 1401, 1486, 1532, 1587, 1628, 1658, 2021, 3155, 3168, 3503, 3628				
$K^{+}(C)$ -TS _{2,3}	0.18 (0.02)	-51 , 53, 167, 178, 237, 331, 384, 435, 469, 512, 527, 543, 590, 659, 730, 765, 791, 934, 970, 979, 1077, 1117, 1234, 1276, 1326, 1391, 1447, 1516, 1571, 1618, 1661, 3133, 3155, 3482, 3568, 3606				
K ⁺ (C)-TS _{3,6}	0.20 (0.02)	-1814 , 53, 104, 169, 188, 197, 248, 347, 423, 497, 534, 591, 623, 647, 691, 753, 777, 934, 971, 987, 1018, 1124, 1153, 1281, 1341, 1392, 1494, 1527, 1612, 1621, 1679, 2026, 3134, 3163, 3492, 3616				
K ⁺ (C)-TS _{1,4}	0.20 (0.02)	-1861 , 35, 49, 127, 188, 189, 370, 386, 520, 538, 562, 579, 631, 641, 702, 740, 778, 902, 967, 1022, 1057, 1081, 1128, 1222, 1373, 1381, 1408, 1473, 1605, 1683, 1729, 1994, 3157, 3184, 3487, 3509				

Table 25. Vibrational Frequencies (in cm⁻¹) of the Transition States for the Unimolecular Tautomerization of M^+ (Cytosine)^a

Table 2S. (continued) Vibrational Frequencies (in cm^{-1}) of the Transition States for the Unimolecular Tautomerization of $M^+(Cytosine)^a$

Species	E_{int} , eV	Vibrational Frequencies ^a , cm ⁻¹
K ⁺ (C)-TS _{4,5}	0.18 (0.02)	-1029 , 58(2), 159, 177, 228, 399, 444, 546, 554, 597, 662, 681, 754, 779, 794, 924, 947, 997, 1053, 1081, 1143, 1212, 1317, 1476, 1482, 1515, 1556, 1790, 1797, 1964, 3291, 3321, 3661, 3692, 3923
101		

^aObtained from a vibrational analysis of the MP2(full)/6-31G* geometry optimized structures and scaled by 0.9646. The imaginary frequencies (indicated in boldface) correspond to the reaction coordinate for the tautomerization.

Reactant	Energized	Molecule	Transition State			
	1-D ^a	2-D ^b	1-D ^a	2-D ^c	$2-D^{b,d}$	
$Li^{+}(C_1)$	0.097	0.049	0.131	0.055	0.060	
$Li^{+}(C_2)$	0.097	0.050	0.131	0.054	0.060	
$Li^{+}(C_3)$	0.128	0.044	0.129	0.055	0.064	
$Li^{+}(C_4)$	0.114	0.041	0.128	0.054	0.068	
$\mathrm{Li}^{+}(\mathrm{C}_{5})$	0.117	0.040	0.129	0.054		
$\mathrm{Li}^{+}(\mathrm{C}_{6})$	0.130	0.044	0.130	0.054		
$\operatorname{Na}^{+}(C_1)$	0.077	0.036	0.131	0.055	0.0070	
$Na^+(C_2)$	0.075	0.037	0.131	0.054	0.0063	
$Na^+(C_3)$	0.124	0.029	0.129	0.055	0.0085	
$Na^+(C_4)$	0.106	0.024	0.128	0.054	0.010	
$Na^+(C_5)$	0.111	0.024	0.129	0.054		
$Na^+(C_6)$	0.111	0.024	0.130	0.054		
$K^{+}(C_{1})$	0.074	0.025	0.131	0.055	0.0036	
$K^+(C_2)$	0.071	0.026	0.131	0.054	0.0036	
$K^+(C_3)$	0.123	0.021	0.129	0.055	0.0043	
$K^+(C_4)$	0.104	0.017	0.128	0.054	0.0054	
$K^+(C_5)$	0.109	0.016	0.129	0.054		
$K^+(C_6)$	0.127	0.021	0.130	0.054		

Table 3S. Rotational Constants of M⁺(cytosine) in cm⁻¹

^aActive external. ^bInactive external. ^cRotational constants of the transition state treated as free internal rotors. ^dTwo-dimensional rotational constant of the transition state at the threshold energy for dissociation, treated variationally and statistically.

Process	Energized Molecule		Transiti	on State	e	
	$1-D^a$	$2-D^b$	$1-D^a$	$2-D^b$		
$Li^+(C_2) \rightarrow Li^+(C_3)$	0.097	0.050	0.128	0.044		
$\operatorname{Na}^{+}(\operatorname{C}_{2}) \rightarrow \operatorname{Na}^{+}(\operatorname{C}_{3})$	0.075	0.036	0.085	0.035		
$\mathrm{K}^{\scriptscriptstyle +}(\mathrm{C}_2) \ \to \mathrm{K}^{\scriptscriptstyle +}(\mathrm{C}_3)$	0.072	0.026	0.073	0.027		
$Li^+(C_2) \rightarrow Li^+(C_1)$	0.097	0.050	0.097	0.049		
$\operatorname{Na}^{+}(\operatorname{C}_{2}) \to \operatorname{Na}^{+}(\operatorname{C}_{1})$	0.075	0.036	0.077	0.036		
^a Active external. ^b Inactive external.						

Table 4S. Rotational Constants for Unimolecular Tautomerization of M⁺(cytosine) Complexes in cm⁻¹

Table 5S. MP2(full)/6-31G* Optimized Geometries of cytosine and M⁺(cytosine)^a

C ₁	C_2	C ₃
x, y, z	x, y, z	x, y, z
N 0.082054, -1.025299, -0.000345	N 0.048633, -1.005303, -0.000279	N -0.006719, -0.977298, -0.000008
C -1.190120, -0.521040, 0.000025	C -1.104881, -0.335882, -0.000697	C 1.134373, -0.274980, -0.000019
N -1.277603, 0.891306, -0.000460	N -1.303504, 0.986104, -0.000173	N 1.296524, 1.047206, -0.000004
C -0.188685, 1.696894, -0.000143	C -0.170585, 1.718193, 0.000109	C 0.138854, 1.736292, 0.000004
C 1.0452331, 0.180541, 0.000522	C 1.093093, 1.162525, 0.000110	C -1.113217, 1.148959, 0.000003
C 1.129889, -0.260218, -0.000021	C 1.156166, -0.246405, 0.000058	C -1.141633, -0.257701, 0.000001
Н -2.202156, 1.268127, -0.000665	Н -0.304054, 2.798396, 0.000241	Н 0.237684, 2.820567, 0.000008
Н -0.369506, 2.751702, 0.000072	Н 1.985912, 1.778956, 0.000220	Н -2.021554, 1.742414, 0.000006
Н 1.917553, 1.794551, 0.001168	N 2.337432, -0.919227, 0.000104	N -2.302873, -0.966464, 0.000002
N 2.339955, -0.844685, 0.000257	Н 2.313351, -1.928373, 0.000029	Н -2.254876, -1.974322, 0.000000
Н 2.371902, -1.841570, -0.000010	Н 3.224787, -0.442785, 0.000229	Н -3.202718, -0.513797, 0.000006
Н 3.188205, -0.325928, 0.000677	O -2.210038, -1.117123, 0.000427	O 2.278575, -0.997758, 0.000012
O -2.211843, -1.171650, 0.000488	Н -2.960380, -0.490815, 0.000823	Н 1.994079, -1.932313, 0.000020

C_4	C ₅	C ₆
x, y, z	x, y, z	x, y, z
N -0.034986, -0.975596, -0.000141	N 0.049275, -0.973002, -0.000031	N -0.026097, -0.907268, -0.000011
C 1.226164, -0.421340, -0.000603	C -1.224301, -0.424771, -0.000099	C 1.296613, -0.374482, -0.000032
N 1.206793, 0.970524, -0.000020	N -1.220193, 0.959335, -0.000007	N 1.394982, 1.001886, -0.000001
C 0.047526, 1.716155, 0.000072	C -0.064325, 1.721278, 0.000014	C 0.274888, 1.700144, 0.000005
C -1.169647, 1.130575, -0.000038	C 1.156100, 1.148088, -0.000008	C -1.037662, 1.197243, 0.000000
C -1.277214, -0.322145, 0.000054	C 1.287848, -0.300037, -0.000003	C -1.169163, -0.176820, -0.000001
Н 0.182326, 2.793052, 0.000290	Н -0.212950, 2.795847, 0.000060	Н 0.406878, 2.783088, 0.000017
Н -2.070072, 1.733359, 0.000043	Н 2.063656, 1.737178, 0.000014	Н -1.901424, 1.850022, 0.000008
Н -2.327367, -1.070700, 0.000110	N 2.447266, -0.862960, 0.000026	N -2.351598, -0.847266, 0.000007
N -3.164983, -0.483227, 0.000032	Н 2.364426, -1.885957, 0.000030	Н -2.397503, -1.854435, -0.000001
O 2.266388, -1.068915, 0.000335	O -2.249031, -1.097352, 0.000061	Н -3.220606, -0.336626, 0.000011
Н 2.118441, 1.410524, 0.000265	Н -2.136336, 1.389770, 0.000050	O 2.231706, -1.165828, 0.000023
Н -0.068873, -1.991447, 0.000142	Н 0.047087, -1.988974, 0.000011	Н -0.050049, -1.923405, -0.000008

	$Li^+(C_1)$	_	$Li^+(C_2)$	_	$\mathrm{Li}^{+}(\mathrm{C}_{3})$
	x, y, z	-	x, y, z	-	x, y, z
Ν	-0.050600, -0.907629, 0.000013	Ν	-0.058955, -0.866651, -0.00012	Ν	-0.250167, -1.023062, -0.00009
С	-1.169617, -0.123258, 0.000035	С	-1.069276, 0.019086, 0.000013	С	0.906143, -0.404814, -0.000103
Ν	-1.028158, 1.241203, 0.000007	Ν	-1.059954, 1.322168, 0.000141	Ν	1.194166, 0.896039, 0.000002
С	0.198377, 1.840496, 0.000011	С	0.194859, 1.852331, 0.000159	С	0.100135, 1.704816, 0.000076
С	1.323954, 1.082327, 0.000005	С	1.331564, 1.081216, 0.000050	С	-1.177165, 1.202732, 0.000068
С	1.163108, -0.339838, -0.000004	С	1.181370, -0.326677, -0.000114	С	-1.333014, -0.206867, -0.00001
Н	-1.886724, 1.787610, -0.000011	Н	0.249752, 2.936880, 0.000310	Н	0.290345, 2.773492, 0.000087
Н	0.208147, 2.924807, 0.000001	Н	2.316005, 1.535828, 0.000141	Н	-2.034767, 1.866167, 0.000088
Н	2.304153, 1.542867, -0.000002	Ν	2.235857, -1.156941, -0.000061	Ν	-2.529812, -0.802414, -0.00004
Ν	2.233894, -1.138382, -0.000019	Н	2.110368, -2.159614, -0.000575	Н	-2.581158, -1.813706, -0.00009
Н	2.122066, -2.144231, -0.000027	Н	3.181883, -0.800773, -0.000224	Н	-3.391739, -0.274235, -0.00006
Н	3.174249, -0.766001, -0.000032	Ο	-2.279020, -0.648141, -0.00045	0	2.062603, -1.156066, 0.000191
0	-2.306329, -0.659162, -0.00006	Н	-3.009338, 0.005490, -0.000419	Н	1.842012, -2.110094, 0.000290
Li	-1.550713, -2.398823, 0.000092	Li	-1.422086, -2.392815, 0.001362	Li	3.166193, 0.512585, -0.000395

^aStandard Orientation, Å.

Table 5S (continued). MP2(full)/6-31G* Optimized Geometries of Cytosine and M⁺(cytosine)^a

	$\mathrm{Li}^{+}(\mathrm{C}_{1})$		$\mathrm{Li}^{+}(\mathrm{C}_{2})$		$\mathrm{Li}^{+}(\mathrm{C}_{3})$
	x, y, z	•	x, y, z	-	x, y, z
Ν	-0.050600, -0.907629, 0.000013	Ν	-0.058955, -0.866651, -0.00012	Ν	-0.250167, -1.023062, -0.00009
С	-1.169617, -0.123258, 0.000035	С	-1.069276, 0.019086, 0.000013	С	0.906143, -0.404814, -0.000103
Ν	-1.028158, 1.241203, 0.000007	Ν	-1.059954, 1.322168, 0.000141	Ν	1.194166, 0.896039, 0.000002
С	0.198377, 1.840496, 0.000011	С	0.194859, 1.852331, 0.000159	С	0.100135, 1.704816, 0.000076
С	1.323954, 1.082327, 0.000005	С	1.331564, 1.081216, 0.000050	С	-1.177165, 1.202732, 0.000068
С	1.163108, -0.339838, -0.000004	С	1.181370, -0.326677, -0.000114	С	-1.333014, -0.206867, -0.00001
Н	-1.886724, 1.787610, -0.000011	Н	0.249752, 2.936880, 0.000310	Н	0.290345, 2.773492, 0.000087
Н	0.208147, 2.924807, 0.000001	Н	2.316005, 1.535828, 0.000141	Н	-2.034767, 1.866167, 0.000088
Η	2.304153, 1.542867, -0.000002	Ν	2.235857, -1.156941, -0.000061	Ν	-2.529812, -0.802414, -0.00004
Ν	2.233894, -1.138382, -0.000019	Н	2.110368, -2.159614, -0.000575	Н	-2.581158, -1.813706, -0.00009
Н	2.122066, -2.144231, -0.000027	Н	3.181883, -0.800773, -0.000224	Н	-3.391739, -0.274235, -0.00006
Н	3.174249, -0.766001, -0.000032	0	-2.279020, -0.648141, -0.00045	0	2.062603, -1.156066, 0.000191
0	-2.306329, -0.659162, -0.00006	Н	-3.009338, 0.005490, -0.000419	Н	1.842012, -2.110094, 0.000290
Li	-1.550713, -2.398823, 0.000092	Li	-1.422086, -2.392815, 0.001362	Li	3.166193, 0.512585, -0.000395
	T:+(C)		T:+(C)		· ·+(2)
	$L1(C_4)$		$L_1(C_5)$	-	$L1^{\circ}(C_6)$
	x, y, z		x, y, z		x, y, z
Ν	-0.015283, -0.886334, -0.00002	Ν	-0.002646, -0.900579, -0.00004	Ν	0.229790, -0.948051, -0.000554
С	-1.053343, -0.036154, -0.00009	С	1.052658, -0.056956, -0.000011	C	-1.065009, -0.449860, -0.00156
N	-0.743820, 1.283093, -0.000002	N	0.766821, 1.260451, -0.000001	С	1.339211, -0.158669, 0.000060
C	0.572331, 1.741917, 0.000003	C	-0.545119, 1.747481, 0.000001	Н	0.299618, -1.965466, -0.000559
C	1.607135, 0.880814, 0.000004	C	-1.589545, 0.902229, -0.000004	N	-1.250669, 0.894427, -0.000879
C	1.369532, -0.554792, 0.000004	C	-1.388562, -0.536711, -0.00001	C	1.135290, 1.226709, 0.000652
H	-1.519758, 1.935616, -0.000006	H	1.553645, 1.899958, 0.000015	N	2.541523, -0.743473, -0.000025
H	0.688306, 2.819301, 0.000005	H	-0.638845, 2.826534, 0.000006	0 C	-2.043209, -1.237040, 0.000683
H N	2.625070, 1.252133, 0.000006	H N	-2.610268, 1.262928, -0.000002	C II	-0.16/395, 1.086/05, -0.000036
	2.100140, -1.354/90, 0.000000		-2.308/22, -1.330114, 0.000003	п	1.975085, 1.910150, 0.001529
П	3.142904, -1.232019, -0.000008	П	-2.084140, -2.340034, 0.0000005	п	2.004108, -1.748303, -0.000134
U Ц	-2.233712, -0.427423, -0.00000	U U	2.244998, -0.480377, 0.000010	п u	0.262740 = 2.756077 = 0.000099
п Гі	-0.212908, -1.885427, -0.00003 -3.833687, -1.178224, 0.000023	п Li	3 881103 -1 092666 -0 000019	п Ті	-3.236217 + 0.290752 + 0.000201
	-5.855087, -1.178224, 0.000025	LI	5.881105; -1.092000; -0.000019	LI	-5.230217, 0.290752, 0.000570
	$Ne^+(C)$		$\operatorname{Na}^+(C)$		$\operatorname{Ne}^{+}(C)$
		•		-	
N	A, y, Z	N	A, y, Z	N	x, y, Z
N C	-0.239780, 0.340324, 0.000081 0.600842 0.784103 0.00002	N C	0.243011, 0.302429, -0.000008	N C	-0.775090, -1.024439, -0.00003
U N	-0.009842, -0.784103, -0.00002 0.307602 1.728606 0.000048	N N	0.491575, -0.815755, -0.000001 0.337467, 1.828210, 0.00003	U N	0.443314, -0.319308, -0.000027 0.846320, 0.751044, 0.000010
C	1.718009 - 1.395257 - 0.000048	C	-0.557407, -1.828210, -0.00005 -1.645647, -1.475376, 0.000009	C	-0.175836 1 650094 0 000035
C	2.083684 = 0.088652 = 0.000104	C	-2.067857 -0.165009 0.000009	C	-0.175850, 1.050094, 0.000055 -1.497717, 1.272622, 0.000019
C	0.033676 0.883071 0.000050	C	-1.070868_0.842031_0.000018	C	-1.779810 -0.116428 -0.00001
н	0.097299 -2.700170 -0.000011	н	-2 359402 -2 294227 -0 00002	н	0 108551 2 698554 0 000048
Н	2 427466 -2 215437 -0 000151	Н	-3 120791 0 091424 -0 000013	Н	-2 289750 2 013623 0 000024
Н	3 127464 0 199481 -0 000112	N	-1 385700 2 151727 0 000019	N	-3 029752 -0 603444 -0 00002
N	1.338028, 2.188040, 0.000065	Н	-0.667870, 2.860316, 0.000011	Н	-3.170451, -1.605732, -0.00004
Н	0.602606, 2.881751, 0.000226	Н	-2.347664, 2.456543, 0.000007	Н	-3.839861, 0.000452, -0.000012
Н	2.295837, 2.510582, 0.000099	0	1.835033, -1.092374, 0.000060	0	1.494998, -1.408648, 0.000069
0	-1.804871, -1.150411. 0.000277	Ĥ	1.935826, -2.062805, 0.000100	Ĥ	1.121832, -2.314490. 0.000104
Na	-2.708764, 0.894332, -0.000188	Na	0.545337, 1.052616, -0.000022	Na	3.171256, 0.263101, -0.000046

Table 5S (continued). MP2(full)/6-31G* Optimized Geometries of Cytosine and M⁺(cytosine)^a

	$Na^+(C_4)$		$Na^+(C_5)$		$Na^+(C_6)$
	x, y, z	_	x, y, z	_	x, y, z
Ν	0.333700, -0.800135, -0.000024	Ν	-0.372955, -0.827594, 0.000022	Ν	-0.718857, -0.947240, 0.000727
С	-0.530924, 0.236966, -0.000005	С	0.534743, 0.182332, 0.000033	С	0.613825, -0.533374, -0.008496
Ν	0.044054, 1.473337, -0.000001	Ν	0.015740, 1.433894, 0.000011	Ν	0.869771, 0.805147, -0.008111
С	1.423927, 1.662927, 0.000005	С	-1.358267, 1.686051, -0.000018	С	-0.173372, 1.646412, -0.005102
С	2.271789, 0.614893, -0.000002	С	-2.243726, 0.675211, -0.000029	С	-1.504194, 1.266877, -0.001123
С	1.754025, -0.746430, 0.000005	С	-1.796307, -0.706702, -0.00007	С	-1.783511, -0.101946, 0.002247
Н	-0.587021, 2.266127, 0.000026	Η	0.679333, 2.199467, 0.000032	Н	0.077175, 2.704797, -0.005791
Н	1.750873, 2.696557, 0.000002	Н	-1.637884, 2.732651, -0.000031	Н	-2.301921, 1.998755, 0.000370
Н	3.343074, 0.778661, -0.000005	Н	-3.311023, 0.855287, -0.000052	N	-3.017549, -0.623860, 0.007966
N	2.344974, -1.883595, 0.000014	N	-2.623217, -1.682753, -0.00002	H	-3.191242, -1.620480, 0.009341
H	3.361273, -1.768112, 0.000010	H	-2.168027, -2.601178, 0.000003	H	-3.825729, -0.015696, 0.009771
0	-1.7/9232, 0.088987, -0.000001	0	1.//3188, -0.030046, 0.0000/1	0	1.515854, -1.396842, -0.011464
H	-0.055559, -1.740417, -0.00002	H N-	0.025697, -1.762587, 0.000049	H N.	-0.846231, -1.958383, 0.001534
Na	-3.831889, -0.462009, 0.000006	Na	3.842797, -0.424496, -0.000052	Na	3.191916, 0.159964, 0.013386
	$K^{+}(C_{\cdot})$		$K^+(C_2)$		$K^{+}(C_{2})$
		-		-	
N	0.033315.0.420114.0.000130	N	0.027527.0.363210.0.000030	N	1 23/418 1 015508 0 000068
C	-0.056088 -0.939275 -0.00099	C	-0.120877 -0.970604 0.000035	C	-0.006001 -0.553732 -0.00007
N	1 124124 -1 668894 -0 000101	N	-1 188315 -1 740573 0 000026	N	-0.449863_0.702916_0.000038
C	2 354553 -1 089499 -0 000204	C	-2 361395 -1 068989 -0 00004	C	0 546193 1 628792 0 000091
Č	2.459575, 0.263239, -0.000164	Č	-2.436431, 0.306499, 0.000020	Č	1.881946, 1.299689, 0.000045
Č	1.237298, 1.007045, 0.000069	Č	-1.213424, 1.019889, -0.000043	Č	2.207940, -0.077804, -0.000026
Н	1.016386, -2.679504, -0.000014	Н	-3.260335, -1.679292, 0.000107	Н	0.230806, 2.668958, 0.000124
Н	3.209160, -1.757280, -0.000277	Н	-3.388762, 0.823973, 0.000121	Н	2.648388, 2.066997, 0.000052
Η	3.426693, 0.750289, -0.000228	Ν	-1.185054, 2.370036, 0.000005	Ν	3.475274, -0.525566, -0.000065
Ν	1.286805, 2.349692, 0.000180	Η	-0.309468, 2.869468, -0.000042	Η	3.647019, -1.522437, -0.000126
Н	0.430926, 2.886541, 0.000355	Η	-2.037177, 2.909720, 0.000046	Η	4.264952, 0.103939, -0.000068
Η	2.164252, 2.850143, 0.000122	0	1.091975, -1.605116, -0.000029	0	-1.010427, -1.490409, 0.000187
0	-1.145065, -1.543116, 0.000566	Н	0.899508, -2.561683, -0.000023	Н	-0.574763, -2.367327, 0.000245
Κ	-2.850981, 0.372437, -0.000191	Κ	2.787341, 0.411014, 0.000014	Κ	-3.143803, 0.161010, -0.000068
	$K^{*}(C_{4})$	-	$K^{*}(C_{5})$	-	$K^{+}(C_{6})$
	x, y, z		x, y, z		x, y, z
N	-0.773647, -0.774165, -0.00003	N	0.826830, -0.808417, -0.000062	N	1.168808, -0.940686, -0.000064
C	0.036611, 0.310697, 0.000004	C	-0.039121, 0.244337, -0.000111	C	-0.179363, -0.557080, 0.000337
N	-0.617993, 1.511324, 0.000002	N	0.549663, 1.470615, -0.000028	N	-0.459370, 0.779258, 0.000557
C	-2.003234, 1.616991, -0.000001	C	1.932643, 1.652381, 0.000046	C	0.5/1/66, 1.631/86, 0.000384
C	-2.787908, 0.522299, -0.000003	C	2.768098, 0.599420, 0.000061	C	1.913407, 1.282465, 0.000018
U 11	-2.190049, -0.803/82, -0.00001	U	2.251480, -0.757849, 0.000015		2.21/800, -0.0/8519, -0.000190
H TT	-0.030238, 2.340233, 0.000004	H U	-0.0/3809, 2.208039, -0.000029	H U	0.303339, 2.08/024, 0.000304
п u	-2.392787, 2.028010, 0.000002	п u	2.203010, 2.003438, 0.000094 3.842031 0.726477 0.000120	П N	2.093200, 2.031293, -0.000091 3.462871 -0.580460 -0.000521
п N	-5.800055, 0.022428, 0.000005	л N	3.030226 = 1.774541 = 0.000120	И	3.651767 _1 573786 _0.000521
ци Ц	-2.717520, -1.771527, 0.000004 -3.738074 -1.910120 0.000023	ч	2 525735 _2 667308 0 00007	п Ц	4260073 + 0.041156 + 0.000013
\cap	1283735 0234782 0000025	0	-1 280368 0 093351 _0 000110	0	-1 048291 -1 447389 0 000840
н	-0 330678 -1 689559 -0 00004	н	0 383539 -1 722753 -0 000087	н	1 314055 -1 948917 -0 000083
K	3 711903 -0 268554 -0 000001	K	-3 738250 -0 246245 0 000058	K	-3 167804 0 098090 -0 000473
- 17	2., 11, 05, 0.200557, 0.000001	17	2.730220, 0.210213, 0.000030	17	5.10,001, 0.000000, 0.000+75

Table 6S. MP2(full)/6-31G* Optimized Geometries of Transition States for Unimolecular Tautomerization of Cytosine and M⁺(cytosine) Complexes.^a

C-TS _{1,2}	C-TS _{2,3}	C-TS _{3,6}
x, y, z	x, y, z	x, y, z
N -0.136188, 1.088360, 0.000176	N -0.830699, -0.048605, -0.519890	N 0.004375, -0.901962, 0.002031
C 1.075642, -0.521443, -0.001252	C -0.822213, -0.096984, 0.814539	C -1.230879, -0.285446, 0.001416
N 1.308951, 0.830533, 0.000823	N 0.232684, -0.043552, 1.625709	N -1.414997, 1.039964, 0.006518
C 0.281816, 1.691596, 0.002443	C 1.419976, 0.069063, 0.998712	C -0.260860, 1.730463, 0.003176
C -1.001645, 1.192915, -0.001383	C 1.552285, 0.126590, -0.375101	C 1.021431, 1.192347, -0.004276
C -1.157334, -0.218644, -0.001445	C 0.364093, 0.064861, -1.119681	C 1.144351, -0.205033, -0.001621
H 0.506617, 2.754187, 0.004309	Н 2.295254, 0.113988, 1.643806	Н -0.373867, 2.813642, 0.006226
H -1.859362, 1.855058, -0.013141	Н 2.523448, 0.223203, -0.849720	Н 1.896671, 1.831412, -0.013474
N -2.402038, -0.772658, -0.056609	N 0.346786, 0.181017, -2.489314	N 2.332488, -0.875019, -0.064882
Н -2.441306, -1.766883, 0.131094	Н -0.524313, -0.115487, -2.913993	Н 2.313416, -1.852729, 0.196524
Н -3.197690, -0.225444, 0.239386	Н 1.178441, -0.108320, -2.987463	Н 3.159131, -0.371975, 0.228659
O 2.240969, -1.070330, 0.003961	O -2.044651, -0.287200, 1.411022	O -2.083329, -1.248985, 0.001438
H 2.478051, 0.292569, 0.005763	Н -2.441870, 0.581016, 1.592843	Н -0.826044, -1.863341, -0.004269
C-TS _{1,4}	C-TS _{4,5}	$Li^+(C)$ -TS _{1,2}
x, y, z	x, y, z	x, y, z
N 0.000000, 0.974535, 0.000000	N -0.057780, -0.963843, 0.034987	N 0.018503 -0.962177 -0.001065
C 1.221963, 0.372137, 0.000000	C 1.222130, -0.453978, 0.002282	C -1.037092 -0.157415 -0.000644
N 1.116360, -1.047007, 0.000000	N 1.246723, 0.934183, -0.005550	N -1.094865 1.171880 -0.000464
C -0.054195, -1.740483, 0.000000	C 0.112180, 1.715479, 0.000767	C 0.083405 1.841342 0.000323
C -1.260206, -1.109707, 0.000000	C -1.124838, 1.176102, 0.011698	C 1.256471 1.124035 0.000620
C -1.199293, 0.317924, 0.000000	C -1.313910, -0.276176, 0.011294	C 1.208049 -0.299618 -0.000079
H 2.007437, -1.530867, 0.000000	Н 0.285282, 2.786872, -0.000875	Н 0.052496 2.925815 0.000774
H 0.036205, -2.822718, 0.000000	Н -2.007239, 1.802765, 0.012168	H 2.210802 1.638028 0.001348
N -2.191603, -1.660139, 0.000000	N -2.391390, -0.894868, -0.064860	N 2.321672 -1.037960 -0.000040
Н -2.075054, 1.299335, 0.000000	Н -3.224465, -1.376122, 0.178634	Н 2.265908 -2.048383 -0.000942
Н -3.080234, 1.157654, 0.000000	O 2.241752, -1.134749, -0.011813	Н 3.239611 -0.613021 0.000412
O 2.323242, 0.905477, 0.000000	Н 2.171126, 1.345713, -0.026382	O -2.288902 -0.588002 -0.000047
H -0.896501, 1.984985, 0.000000	Н -0.114956, -1.978102, 0.022684	Н -2.388858 0.743288 0.000556
		Li -1.616971 -2.397993 0.002632
1 1 1 (2) 2 2		
$L_{1}(C)$ -TS _{2,3}	$L_{1}(C)$ -TS _{3,6}	$L1'(C)-TS_{1,4}$
x, y, z	x, y, z	x, y, z
N -0.090713, -0.969603, -0.129432	N 0.198203, -0.946660, -0.000296	N 0.044173, -0.862863, 0.000000
C 0.963292, -0.179770, -0.200109	C -0.997038, -0.330181, -0.000332	C 1.046324, 0.009312, 0.000000
C -1.272389, -0.318032, -0.000693	N -1.271730, 0.959748, -0.000571	C -1.301700, -0.512727, 0.000000
N 1 082255 1 121407 0 086448	C = 0.141463 + 1.732800 = 0.000028	N 0.676004 1.338234 0.000001

N = 0.090715, = 0.909005, = 0.129452	N 0.198203, -0.940000, -0.000290	10.0441/5, -0.802805, 0.000000
C 0.963292, -0.179770, -0.200109	C -0.997038, -0.330181, -0.000332	C 1.046324, 0.009312, 0.000000
C -1.272389, -0.318032, -0.000693	N -1.271730, 0.959748, -0.000571	C -1.301700, -0.512727, 0.000000
N 1.083355, 1.131407, -0.086448	C -0.141463, 1.732800, -0.000028	N 0.676004, 1.338234, 0.000001
C -1.313069, 1.097131, 0.053615	C 1.132310, 1.214981, 0.000205	C -1.665078, 0.870264, 0.000000
N -2.371141, -1.083108, 0.089931	C 1.319087, -0.197600, 0.000014	N -1.893377, -1.672798, 0.000000
O 2.192184, -0.876689, -0.299451	Н -0.300739, 2.806697, 0.000028	O 2.276975, -0.285581, -0.000001
Li 2.556146, -0.714601, 1.546281	Н 1.989858, 1.878185, 0.000536	C -0.635062, 1.755267, 0.000000
C -0.114543, 1.771378, 0.025313	N 2.511305, -0.791197, 0.000187	Н 1.431215, 2.016843, 0.000001
Н -2.252077, 1.633205, 0.140432	Н 2.587197, -1.801356, 0.000025	Н -2.695056, 1.202999, -0.000001
Н -2.284356, -2.080778, -0.060626	Н 3.366708, -0.250692, 0.000423	Н -2.903839, -1.792319, 0.000001
Н -3.297325, -0.678791, 0.089957	O -1.899598, -1.291422, 0.000021	Li 3.605565, -1.427573, 0.000002
H 2.768366, -0.345884, -0.891482	Н -0.704311, -1.934079, 0.000218	Н -0.783171, 2.829670, 0.000000
H -0.070772, 2.854458, 0.091366	Li -3.227917, 0.186460, 0.001399	Н -0.536157, -2.040526, 0.000000

Table 6S (continued). $MP2(full)/6-31G^*$ Optimized Geometries of Transition States for UnimolecularTautomerization of Cytosine and M^+ (cytosine) Complexes.

$Na^{+}(C)-TS_{4,5}$		$Na^{+}(C)-TS_{1,2}$ $Na^{+}(C)-TS_{2,3}$		$Na^{+}(C)$ -TS _{2,3}
x, y, z	_	x, y, z	-	x, y, z
N 0.002373, -0.887470, 0.000000	Ν	-0.188781, 0.646303, 0.000014	Ν	-0.354906, -0.881098, -0.422653
C -1.063507, -0.072173, 0.000000	С	-0.577325, -0.625343, 0.000021	С	0.597701, 0.021997, -0.589343
N -0.795784, 1.255096, 0.000000	Ν	0.182119, -1.729258, 0.000007	Ν	0.618174, 1.314245, -0.293134
C 0.503943, 1.756599, 0.000000	С	1.523941, -1.577347, -0.000026	С	-0.580271, 1.793147, 0.139750
C 1.573841, 0.939469, 0.000000	С	2.048139, -0.306069, -0.000030	С	-1.687356, 0.991838, 0.295018
C 1.430213, -0.517962, 0.000000	С	1.161895, 0.805799, 0.000002	С	-1.533115, -0.389560, 0.026004
Н 0.579870, 2.837735, 0.000000	Н	2.137820, -2.471990, -0.000049	Н	-0.615975, 2.856525, 0.358897
Н 2.577599, 1.345531, 0.000000	Н	3.121159, -0.154016, -0.000053	Н	-2.631641, 1.401350, 0.637521
N 2.300773, -1.383880, 0.000000	Ν	1.626245, 2.062699, 0.000018	Ν	-2.517065, -1.284508, 0.227078
H 2.992163, -2.099851, 0.000000	Н	0.983365, 2.842923, 0.000074	Н	-2.385435, -2.227071, -0.119348
O -2.258889, -0.495552, 0.000000	Н	2.617195, 2.262095, 0.000042	Н	-3.461762, -0.984103, 0.425661
H -1.591207, 1.883222, 0.000000	0	-1.824/12, -1.050298, 0.000045	0	1.810/05, -0.50/198, -1.03248/
H -0.179485, -1.888689, 0.000000	H	-1.086205, -2.16/863, 0.000021	H	2.250353, 0.20/948, -1.539339
L1-3.842102, -1.211785, 0.000000	Na	-2.677511, 1.040981, -0.000042	INa	2.486695, -0.522007, 1.153536
		$\mathbf{N}^{+}(\mathbf{O}) = \mathbf{T}\mathbf{O}$		
$Na^{-}(C)-1S_{3,6}$	_	$Na^{*}(C) - IS_{1,4}$	_	Na (C)-1S _{4,5}
x, y, z		x, y, z		x, y, z
N 0.666527, -0.941756, 0.000072	N	0.354111, -0.802479, 0.000008	N	0.666527, -0.941756, 0.000072
C -0.565839, -0.381890, 0.000294	C	-0.546962, 0.201438, -0.000007	C	-0.565839, -0.381890, 0.000294
N -0.875868, 0.903473, 0.000310	N	-0.016821, 1.454639, 0.000000	N	-0.875868, 0.903473, 0.000310
C = 0.229/25, 1.707/58, 0.000181	C	1.353470, 1.693517, 0.000004	C	0.229725, 1.707758, 0.000181
C = 1.524/39, 1.243/91, 0.0000005	C	2.245614, 0.685192, 0.000008	C	1.524739, 1.243791, 0.000005
U = 0.024336 + 2.776130 + 0.000101	с ц	1.632815 2.730283 0.000005	с и	0.034336 2.776130 0.000263
H 2 355969 1 939452 -0.000203	н	3 309077 0 888035 0 000008	н	2 355969 1 939452 _0 000032
N 2 973205 -0 713476 -0 000614	N	2 506159 -1 735174 -0 000008	N	2.555505, 1.555452, -0.000052
H 3 081590 -1 719988 0 000438	н	3.062616 -2.559431 0.000017	Н	3 081590 -1 719988 0 000438
H 3.8093050.144721. 0.000566	0	-1.792286, 0.015954, -0.000025	Н	3.8093050.144721. 0.000566
O -1.403442, -1.394156, 0.000427	Ĥ	-0.674434, 2.224941, -0.000012	0	-1.403442, -1.394156, 0.000427
Na-3.174648, 0.096466, -0.000501	Н	-0.014902, -1.750009, -0.000011	Na	-3.174648, 0.096466, -0.000501
Н -0.167180, -1.963829, 0.000208	Na	-3.827915, -0.479660, 0.000013	Η	-0.167180, -1.963829, 0.000208
K ⁺ (C)TS _{1,2}		$K^{+}(C)$ -TS _{2,3}		K ⁺ (C)-TS _{3,6}
x, y, z	_	x, y, z	-	x, y, z
N 0.064443, 0.524155, 0.000174	Ν	0.737177, -0.828333, 0.591401	Ν	-0.914455, -0.004447, -1.112178
C -0.039050, -0.802828, 0.000089	С	-0.167225, 0.106201, 0.844053	С	-0.383273, -0.000088, 0.122321
N 0.959664, -1.706125, -0.000129	Ν	-0.224144, 1.367935, 0.428811	Ν	0.880299, 0.001965, 0.440935
C 2.232360, -1.263935, -0.000132	С	0.877831, 1.771510, -0.257188	С	1.691019, -0.000816, -0.642604
C 2.462074, 0.092018, -0.000024	С	1.928704, 0.929727, -0.541005	С	1.269943, -0.005255, -1.939068
C 1.346851, 0.971905, 0.000053	С	1.813200, -0.413215, -0.111601	С	-0.130630, -0.007164, -2.183276
H 3.028412, -2.001336, -0.000206	Н	0.884311, 2.809651, -0.578481	Н	2.744150, 0.000701, -0.431165
H 3.473718, 0.480562, -0.000073	H	2.797134, 1.280075, -1.088440	H	1.967904, -0.007253, -2.752266
N 1.521635, 2.303494, -0.000027	N	2./33916, -1.353270, -0.408328	N	-0.663633, -0.011383, -3.393907
H 0.720394, 2.918877, 0.000182	H	2.666989, -2.243357, 0.070564	H	-1.652030, -0.012573, -3.515370
H 2.442912, 2.718109, 0.000085	H	3.040803, -1.08/685, -0./68030 1.262291 0.229179 1.559207	H	-0.091/30, -0.013465, -4.20/943
U = 1.14/041, = 1.309309, 0.000233 K = 2.850740, 0.440027, 0.000101	U U	-1.203201, -0.338178, 1.338307	U V	-1.400000, 0.001383, 0.90098/
H -0 158656 -2 422578 0 000015	П К	-1.550408, 0.455810, 2.050855	л Н	-1 930715 -0 002708 -0 310782
11 0.100000, 2.122070, 0.000010	17	2.512120, 0.570700, 0.0++270	11	1.20712, 0.002700, 0.210702

$K^{+}(C)-TS_{1,4}$	$K^{+}(C)$ -TS _{4,5}
x, y, z	x, y, z
N 0.639681, 0.714270, 0.000000	N -0.799842, -0.779466, 0.000000
C -0.024477, -0.451169, 0.000000	C 0.051206, 0.274551, 0.000000
N 0.799556, -1.574538, 0.000000	N -0.558754, 1.496637, 0.000000
C 2.169840, -1.518089, 0.000000	C -1.939164, 1.654203, 0.000000
C 2.836708, -0.334461, 0.000000	C -2.771728, 0.596169, 0.000000
C 2.018019, 0.836859, 0.000000	C -2.260835, -0.776491, 0.000000
H 0.323540, -2.470414, 0.000000	Н -2.286280, 2.681282, 0.000000
H 2.678435, -2.476424, 0.000000	Н -3.845218, 0.735533, 0.000000
Н 3.918077, -0.293285, 0.000000	N -2.896272, -1.831659, 0.000000
N 2.190798, 2.131302, 0.000000	Н -3.390776, -2.693876, 0.000001
H 3.103502, 2.579418, 0.000000	Н 1.298561, 0.159468, 0.000000
O -1.266310, -0.589652, -0.000001	O 0.051974, 2.303989, 0.000000
H 0.802483, 2.026843, 0.000000	Н -0.377022, -1.703617, 0.000000
K -3.584544, 0.276579, 0.000000	К 3.724529, -0.278328, 0.000000

Table 6S. (continued) MP2(full)/ $6-31G^*$ Optimized Geometries of Transition States for Unimolecular Tautomerization of Cytosine and M⁺(cytosine) Complexes.

Table 7S. Enthalpies and Free Energies of Alkali Metal Ion Binding to Cytosine at 298 K in kJ/mol^a

System	ΔH_0	$\Delta H_0^{\ b}$	ΔH_{298} - ΔH_0^{b}	ΔH_{298}	$\Delta H_{298}{}^{b}$	$T\Delta S_{298}^{\ \ b}$	ΔG_{298}	ΔG_{298}
$Li^{+}(C_{1})$	296 4 (6 6)	269.4	47(03)	301 1 (6 6)	274 1	40.0 (0.6)	261 1 (6 6)	234.1
$Li^{+}(C_2)$	284.7 (6.7)	209.8	3.7 (0.4)	288.4 (6.7)	213.5	38.7 (0.5)	249.7 (6.7)	174.8
$Li^{+}(C_3)$	281.6 (6.9)	230.1	4.2 (0.4)	285.8 (6.9)	234.3	39.7 (0.5)	246.1 (6.9)	194.6
$Li^+(C_4)$ $Li^+(C_5)$	270.2 (7.3)	199.7 187.8	3.9 (0.3) 3.8 (0.3)	274.1 (7.3)	203.6 191.6	36.6 (0.5) 36.6 (0.5)	237.5 (7.3)	167.0 155.0
$Li^+(C_6)$		279.7	4.2 (0.5)		283.9	39.7 (0.5)		244.2
$Na^+(C_1)$	179.3 (4.5)	200.7	1.7 (0.2)	181.0 (4.5)	202.4	34.7 (0.6)	146.3 (4.5)	167.7
$Na^+(C_2)$	175.4 (4.8)	150.2	1.1 (0.3)	176.5 (4.8)	151.3	33.7 (0.7)	142.8 (4.8)	117.6
$Na^+(C_3)$	178.9 (6.2)	170.9	1.1 (0.3)	180.0 (6.2)	172.0	34.0 (0.7)	146.0 (6.2)	138.0
$Na^+(C_4)$	170.9 (4.8)	135.8	1.0 (0.1)	171.9 (4.8)	136.8	27.4 (0.5)	144.5 (4.8)	109.4
$Na^+(C_5)$		128.2	1.1 (0.2)		129.3	27.8 (0.5)		101.5
$Na^+(C_6)$		213.1	2.0 (0.2)		215.1	32.2 (0.6)		182.9
$K^{+}(C_{1})$	138.2 (3.4)	158.9	1.9 (0.3)	140.1 (3.4)	160.8	37.7 (0.7)	102.4 (3.5)	123.1
$K^{+}(C_{2})$	133.1 (3.5)	115.1	1.0 (0.1)	134.1 (3.5)	116.1	30.2 (0.5)	103.9 (3.5)	85.9
$K^{+}(C_{3})$	136.0 (3.5)	133.7	0.3 (0.1)	133.4 (3.5)	134.0	32.5 (0.8)	101.5 (3.6)	101.5
$K^{+}(C_{4})$	131.5 (3.8)	103.8	0.7 (0.2)	132.2 (3.8)	104.5	27.1 (0.6)	105.1 (3.8)	77.4
$K^{+}(C_{5})$		96.5	0.6 (0.1)		97.1	27.2 (0.6)		69.9
$K^{+}(C_{6})$		171.8	0.4 (0.2)		172.2	30.8 (0.7)		141.4

^aUncertainties are listed in the parentheses. ^bValues from calculations as described in text with frequencies scaled by 0.9646. Uncertainties in the enthalpic and entropic corrections are determined by 10% variation in the molecular constants.

Figure Captions

Fig. 1S. Cross sections for the collision-induced dissociation of $M^+(cytosine)$ complexes, where $M^+ = Li^+$ and K^+ parts a and b respectively, with Xe as a function of collision energy in the center-of-mass frame (lower *x*-axis) and laboratory frame (upper *x*-axis). Data for the M^+ product channel are shown for a Xe pressure of 0.2 mTorr (•) and extrapolated to zero (\circ).

Fig. 2S. Zero-pressure-extrapolated cross sections for collision-induced dissociation of M^+ (cytosine) complexes, where $M^+ = Li^+$ and K^+ parts a and b respectively, with Xe in the threshold region as a function of kinetic energy in the center-of-mass frame (lower *x*-axis) and laboratory frame (upper *x*-axis). The solid lines show the best fits to the data using eq 1 convoluted over the neutral and ion kinetic and internal energy distributions. The dashed lines show the model cross sections in the absence of experimental kinetic energy broadening for reactants with an internal energy corresponding to 0 K.

Fig. 3S. RRKM rate constants for the unimolecular tautomerization, $M^+(C_x) \rightarrow M^+(C_y)$, where (x,y) = (1,2), (3,6), (4,1), (3,2), (6,3), (1,4), (5,4), and (4,5), parts a through h, respectively. The internal energy is provided by the association of M^+ with C_x , and taken from theoretical calculations at the MP2(full)/6-311+G(2d,2p)//MP2(full)/6-31G* level of theory including ZPE and BSSE corrections.

(41) Gaussian 98, Revision A.11, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery Jr, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D.K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov. B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzales, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian, Inc Pittsburgh, PA, 2001.

Figure 3S.

Figure 3S.

