Supplementary Information

A remarkable anion effect on palladium nanoparticle formation and stabilization in hydroxyl-functionalized ionic liquids

Xiao Yuan,^{a,b} Ning Yan,^a Sergey A. Katsyuba,^c Elena E. Zvereva,^c Yuan Kou,^{b,*} and Paul J. Dyson^{a,*}

^a Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. Email:paul.dyson@epfl.ch.

^b PKU Green Chemistry Centre, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. Email: yuankou@pku.edu.cn

^c A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia.

FT-IR analysis

Samples

- 1) [C₂OHmim][Tf₂N].
- 2) Pd(OAc)₂ (0.1 mM) dissolved in [C₂OHmim][Tf₂N].

3) Pd NPs (0.1 mM) dispersed in [C₂OHmim][Tf₂N], prepared by thermal decomposition of $Pd(OAc)_2$ at 393 K for 30 min with rapid stirring.

Fig S1 FT-IR spectroscopy of $[C_2OHmim][Tf_2N]$, Pd(OAc)₂- $[C_2OHmim][Tf_2N]$ and Pd NPs-[C₂OHmim][Tf₂N] left) full spectra; and right) the C=O band region. Spectra were recorded on a Perkin Elmer Spectrum (600-4000 cm⁻¹) installed with the ATR accessory (IR-ATR).

The IR spectra reveal: 1) the decomposition of $Pd(OAc)_2$ was complete, as the characteristic absorption band at ca. 1600 cm⁻¹ disappears after thermal decomposition; and 2) [C₂OHmim] does not act as the reductant as no new absorption band for a C=O functionality was observed after the formation of Pd NPs.

NMR analysis of the ionic liquids

NMR spectra of the ionic liquid dissolved in CD_3CN were obtained at 20°C with a Bruker AVANCE-400 instrument.

[C₂OHmim][BF₄]

[C₂OHmim][PF₆]

[C₂OHmim][OTf]

[C₂OHmim][TFA]

[C₂OHmim][Tf₂N]

[C₄mim][Tf₂N]

References

- 1 X. Yang, N. Yan, Z. F. Fei, R. M. Crespo-Quesada, G. Laurenczy, L. Kiwi-Minsker, Y. Kou, Y. D. Li and P. J. Dyson, *Inorg. Chem.*, 2008, **47**, 7444-7446.
- 2. A. H. Jalili, A. Mehdizadeh, M. Shokouhi, H. Sakhaeinia and V. Taghikhani, *J. Chem. Thermodyn.*, 2010, **42**, 787-791.
- 3. L. C. Branco, J. N. Rosa, J. J. M. Ramos and C. A. M. Afonso, *Chem. Eur. J.*, 2002, **8**, 3671-3677.