Supporting Information For the Article in Physical Chemistry Chemical Physics: Electronic Structures and Transport Properties in Fluorinated Boron Nitride

Nanoribbons

Jing Zeng¹, Ke-Qiu Chen^{1,a}, Chang Q. Sun²

¹Department of Applied Physics and Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China ²School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

^aCorresponding authors. E-mail address: keqiuchen@hnu.edu.cn

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

1. Atomic structures for 8-ZBNNR-iF (i = 2-8)

(b)

(d)

(**f**)

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

2. Band structures for 8-ZBNNR-i F (i=3-6)

Figure S2. (Color online) The calculated band structures: (a)-(d) correspond to 8-ZBNNR-3F, 8-ZBNNR-4F, 8-ZBNNR-5F, and 8-ZBNNR-6F, respectively.

3. Electronic properties and I-V curves for 8-ZBNNR-3F (ground state)

Figure S3. (Color online) (a) and (b) correspond to spin-unresolved band structure and DOS of 8-ZBNNR-3F, respectively. (c) : The wave function of partial-filled band (Γ point). (d): The difference between the spin up and down electron density (The isovalue is 0.005 1/Å³). (e): Calculated current as a function of the applied bias for 8-ZBNNR-3F.

From the Fig. S3(a), we can find that there is a partial-filled band near the Fermi level for 8-ZBNNR-3F, which is mainly contributed by three N atoms (N2, N3, and N4). This is clearly illustrated by the Γ point wave function of partial-filled band [see Fig. S3(c)]. The difference between spin-up and spin-down electron density indicates that the un-paired spin is strongly localized on the N atoms surrounding the adsorption site [see Fig. S3(d)]. Mulliken population analysis shows that the 8-ZBNNR-3F has a total magnetic moment of $m \approx 1\mu_B$ per unit cell. More specially, the contributions of these nitrogen atoms N2, N3, and N4 to the magnetic moment are $0.13 \mu_B$, $0.44 \mu_B$, and $0.31 \mu_B$, respectively. The I-V current for 8-ZBNNR-3F is shown in Fig. S3(e). From the picture, we can find that the spin-down current almost keep unchanged due to the presence of spin-down band gap. When the bias is larger than 0.35 V, the current increases quickly.

4. Spin-unresolved band structure, DOS, and the difference between the spin up and down electron density for 8-ZBNNR-iF (i = 2, 4-8)

Figure S4. (Color online) (a1)-(a3) [(b1)-(b3), (c1)-(c3), (d1)-(d3), (e1)-(e3), and (f1)-(f3)] corresponds to spin-unresolved band structure, DOS, and the difference between the spin up and down electron density for 8-ZBNNR-2F [8-ZBNNR-4F, 8-ZBNNR-5F, 8-ZBNNR-6F, 8-ZBNNR-7F, and 8-ZBNNR-8F], respectively. The isovalue is 0.005 1/Å³.

From the picture, we can find that there is a partial-filled band near the Fermi level for

8-ZBNNR-*i*F (*i*=2,4–7) and its corresponding electron states are localized, which drives spontaneous spin polarization. The un-paired spin is strongly localized on the N atoms surrounding the adsorption site. For 8-ZBNNR-2F, the contributions of nitrogen atoms N1, N2, and N3 to the magnetic moment are 0.14 μ_B , 0.48 μ_B , and 0.31 μ_B , respectively; For 8-ZBNNR-4F, the contributions of nitrogen atoms N3, N4, and N5 to the magnetic moment are 0.12 μ_B , 0.43 μ_B , and 0.31 μ_B , respectively; For 8-ZBNNR-5F, the contributions of nitrogen atoms N4, N5, and N6 to the magnetic moment are 0.12 μ_B , 0.43 μ_B , and 0.31 μ_B , respectively; For 8-ZBNNR-6F, the contributions of nitrogen atoms N5, N6, and N7 to the magnetic moment are 0.12 μ_B , 0.44 μ_B , and 0.31 μ_B , respectively; For 8-ZBNNR-7F, the contributions of nitrogen atoms N6, N7, and N8 to the magnetic moment are 0.12 μ_B , 0.47 μ_B , and 0.31 μ_B , respectively; For 8-ZBNNR-8F, the un-paired spin mainly concentrates on N7, N8, and two F atoms attached on the edge B atom, and their corresponding magnetic moments are 0.14 μ_B , 0.58 μ_B , and 0.25 μ_B , respectively.