Prediction and understanding of experimental synthesized IRMOF-14 and its analogues (*M*-IRMOF-14, *M*=cadmium, alkaline earth metals) on the electronic structure, structural stability, chemical bonding, and optical properties

Supporting Information

Li-Ming Yang^{*†}, Ponniah Ravindran[‡], Ponniah Vajeeston[‡], and Mats Tilset^{*†}

[†]Center of Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, N-0315 Oslo, Norway, [‡]Center for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, N-0315 Oslo, Norway

(E-mail of corresponding authors: <u>mats.tilset@kjemi.uio.no</u> and <u>l.m.yang@kjemi.uio.no</u>.; Fax: +47 22855441;)

Page 2, Fig. S1. Calculated charge density, charge transfer, and ELF plots for Zn-IRMOF-14 Page 3, Fig. S2. Calculated charge density, charge transfer, and ELF plots for Cd-IRMOF-14 Page 4, Fig. S3. Calculated charge density, charge transfer, and ELF plots for Be-IRMOF-14 Page 5, Fig. S4. Calculated charge density, charge transfer, and ELF plots for Mg-IRMOF-14 Page 6, Fig. S5. Calculated charge density, charge transfer, and ELF plots for Ca-IRMOF-14 Page 7, Fig. S6. Calculated charge density, charge transfer, and ELF plots for Sr-IRMOF-14 Page 8, Fig. S7. Calculated charge density, charge transfer, and ELF plots for Ba-IRMOF-14 Page 9, Fig. S8. Calculated TDOS and PDOS for Cd-IRMOF-14 Page 10, Fig. S9. Calculated TDOS and PDOS for Be-IRMOF-14 Page 11, Fig. S10. Calculated TDOS and PDOS for Mg-IRMOF-14 Page 12, Fig. S11. Calculated TDOS and PDOS for Ca-IRMOF-14 Page 13, Fig. S12. Calculated TDOS and PDOS for Sr-IRMOF-14 Page 14, Fig. S13. Calculated TDOS and PDOS for Ba-IRMOF-14 Page 15, Fig. S14. Calculated optical properties for Cd-IRMOF-14 Page 16, Fig. S15. The electronic band structure of Cd-IRMOF-14 Page 17, Fig. S16. Calculated optical properties for Be-IRMOF-14 Page 18, Fig. S17. The electronic band structure of Be-IRMOF-14 Page 19, Fig. S18. Calculated optical properties for Mg-IRMOF-14 Page 20, Fig. S19. The electronic band structure of Mg-IRMOF-14 Page 21, Fig. S20. Calculated optical properties for Ca-IRMOF-14 Page 22, Fig. S21. The electronic band structure of Ca-IRMOF-14 Page 23, Fig. S22. Calculated optical properties for Sr-IRMOF-14 Page 24, Fig. S23. The electronic band structure of Sr-IRMOF-14 Page 25, Fig. S24. Calculated optical properties for Ba-IRMOF-14 Page 26, Fig. S25. The electronic band structure of Ba-IRMOF-14 Page 27, Table S1. Mulliken effective charges (MEC), bond overlap populations (BOP), and Bader charges (BC) for *M*-IRMOF-14 (M = Zr, Cd, Be, Mg, Ca, Sr, Ba)

Zn

-0.025

Zn

H

Figure S1. Calculated charge density (a), charge transfer (b), and electron localization function (c) plots for Zn-IRMOF-14 in the (110) plane.

(a)

(b)

Figure S2. Calculated charge density (a), charge transfer (b), and electron localization function (c) plots for Cd-IRMOF-14 in the (110) plane.

(b)

Figure S3. Calculated charge density (a), charge transfer (b), and electron localization function (c) plots for Be-IRMOF-14 in the (110) plane.

(b)

Figure S4. Calculated charge density (a), charge transfer (b), and electron localization function (c) plots for Mg-IRMOF-14 in the (110) plane.

Figure S5. Calculated charge density (a), charge transfer (b), and electron localization function (c) plots for Ca-IRMOF-14 in the (110) plane.

Figure S6. Calculated charge density (a), charge transfer (b), and electron localization function (c) plots for Sr-IRMOF-14 in the (110) plane.

(a)

Figure S7. Calculated charge density (a), charge transfer (b), and electron localization function (c) plots for Ba-IRMOF-14 in the (110) plane.

Figure S8. The calculated total density of states (TDOS) and partial density of states (PDOS) for Cd-IRMOF-14 in the cubic *Fm-3m* symmetry (no. 225)

Figure S9. The calculated total density of states (TDOS) and partial density of states (PDOS) for Be-IRMOF-14 in the cubic *Fm-3m* symmetry (no. 225)

Figure S10. The calculated total density of states (TDOS) and partial density of states (PDOS) for Mg-IRMOF-14 in the cubic *Fm-3m* symmetry (no. 225)

Figure S11. The calculated total density of states (TDOS) and partial density of states (PDOS) for Ca-IRMOF-14 in the cubic *Fm-3m* symmetry (no. 225)

Figure S12. The calculated total density of states (TDOS) and partial density of states (PDOS) for Sr-IRMOF-14 in the cubic *Fm-3m* symmetry (no. 225)

Figure S13. The calculated total density of states (TDOS) and partial density of states (PDOS) for Ba-IRMOF-14 in the cubic *Fm-3m* symmetry (no. 225)

Figure S14. Calculated optical properties for Cd-IRMOF-14: (a) dielectric function $\varepsilon(\omega)$, (b) reflectivity $R(\omega)$, (c) refractive index $\mathbf{n}(\omega)$; extinction coefficient $\mathbf{k}(\omega)$, (d) optical conductivity $\sigma(\omega)$, (e) energy loss function $L(\omega)$, (f) absorption $\alpha(\omega)$.

Figure S15. The electronic band structure of Cd-IRMOF-14. The Fermi level is set to zero and placed in the valence band maximum.

Figure S16. Calculated optical properties for Be-IRMOF-14: (a) dielectric function $\varepsilon(\omega)$, (b) reflectivity $R(\omega)$, (c) refractive index $\mathbf{n}(\omega)$; extinction coefficient $\mathbf{k}(\omega)$, (d) optical conductivity $\sigma(\omega)$, (e) energy loss function $L(\omega)$, (f) absorption $\alpha(\omega)$.

Figure S17. The electronic band structure of Be-IRMOF-14. The Fermi level is set to zero and placed in the valence band maximum.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Figure S18. Calculated optical properties for Mg-IRMOF-14: (a) dielectric function $\varepsilon(\omega)$, (b) reflectivity $R(\omega)$, (c) refractive index $\mathbf{n}(\omega)$; extinction coefficient $\mathbf{k}(\omega)$, (d) optical conductivity $\sigma(\omega)$, (e) energy loss function $L(\omega)$, (f) absorption $\alpha(\omega)$.

Figure S19. The electronic band structure of Mg-IRMOF-14. The Fermi level is set to zero and placed in the valence band maximum.

Figure S20. Calculated optical properties for Ca-IRMOF-14: (a) dielectric function $\varepsilon(\omega)$, (b) reflectivity $R(\omega)$, (c) refractive index $\mathbf{n}(\omega)$; extinction coefficient $\mathbf{k}(\omega)$, (d) optical conductivity $\sigma(\omega)$, (e) energy loss function $L(\omega)$, (f) absorption $\alpha(\omega)$.

Figure S21. The electronic band structure of Ca-IRMOF-14. The Fermi level is set to zero and placed in the valence band maximum.

Figure S22. Calculated optical properties for Sr-IRMOF-14: (a) dielectric function $\varepsilon(\omega)$, (b) reflectivity $R(\omega)$, (c) refractive index $\mathbf{n}(\omega)$; extinction coefficient $\mathbf{k}(\omega)$, (d) optical conductivity $\sigma(\omega)$, (e) energy loss function $L(\omega)$, (f) absorption $\alpha(\omega)$.

Figure S23. The electronic band structure of Sr-IRMOF-14. The Fermi level is set to zero and placed in the valence band maximum.

Figure S24. Calculated optical properties for Ba-IRMOF-14: (a) dielectric function $\varepsilon(\omega)$, (b) reflectivity $R(\omega)$, (c) refractive index $\mathbf{n}(\omega)$; extinction coefficient $\mathbf{k}(\omega)$, (d) optical conductivity $\sigma(\omega)$, (e) energy loss function $L(\omega)$, (f) absorption $\alpha(\omega)$.

Figure S25. The electronic band structure of Ba-IRMOF-14. The Fermi level is set to zero and placed in the valence band maximum.

Table S1. Calculated Mulliken effective charges (MEC), bond overlap populations (BOP), and Bader charges (BC; given in terms of *e*) for *M*-IRMOF-14 (M = Zr, Cd, Be, Mg, Ca, Sr, Ba).^a

Material	Atom	MEC (e)	BOP	BC (e)
IRMOF-14	Zn	+1.30	0.26-0.29 (Zn-O)	+1.3898
	01	-1.05	0.26 (O1-Zn)	-1.3341
	O2	-0.65	0.29 (O2-Zn)	-1.7545
	C1	-0.25	1.11 (C1-C2)	+0.0871
			1.10 (C1-C3)	
	C2	-0.01	1.06 (C2-C5)	-0.0174
			0.98 (C2-C6)	
	C3	-0.06	0.84 (C3-C4)	-0.0564
	C4	+0.61	0.91 (C4-O2)	+2.6478
	C5	0.00	1.09 (C5-C5)	-0.0507
	C6	-0.28	1.21 (C6-C6)	+0.0249
	H1	+0.27	0.90 (H1-C1)	+0.0348
	H2	+0.29	0.87 (H2-C6)	+0.0027
Cd-IRMOF-14	Cd	+1.27	0.21-0.23 (Cd-O)	+1.3248
	01	-1.02	0.21 (O1-Cd)	-1.2151
	O2	-0.65	0.23 (O2-Cd)	-1.7489
	C1	-0.25	1.10 (C1-C2)	+0.0799
			1.10 (C1-C3)	
	C2	-0.01	1.06 (C2-C5)	-0.0038
			0.98 (C2-C6)	
	C3	-0.06	0.83 (C3-C4)	-0.0431
	C4	+0.63	0.90 (C4-O2)	+2.6542
	C5	0.00	1.09 (C5-C5)	-0.0404
	C6	-0.28	1.21 (C6-C6)	-0.0046
	H1	+0.27	0.89 (H1-C1)	+0.0228
	H2	+0.29	0.87 (H2-C6)	+0.0288
Be-IRMOF-14	Be	+1.14	0.36-0.37 (Be-O)	+2.0000
	01	-0.96	0.37 (O1-Be)	-2.0012
	O2	-0.63	0.36 (O2-Be)	-1.9093
	C1	-0.26	1.10 (C1-C2)	+0.0720
			1.09 (C1-C3)	
	C2	-0.01	1.06 (C2-C5)	+0.0046
			0.98 (C2-C6)	
	C3	-0.05	0.85 (C3-C4)	-0.0635
	C4	+0.61	0.92 (C4-O2)	+2.6509
	C5	+0.01	1.09 (C5-C5)	-0.0501
	C6	-0.28	1.21 (C6-C6)	+0.0166
	H1	+0.30	0.87 (H1-C1)	+0.0400
	H2	+0.30	0.87 (H2-C6)	+0.0077
Mg-IRMOF-14	Mg	+1.59	0.23 (Mg-O)	+2.0000
	01	-1.29	0.23 (O1-Mg)	-1.9977
	O2	-0.71	0.23 (O2-Mg)	-1.9009
	C1	-0.25	1.11 (C1-C2)	+0.0432
			1.10 (C1-C3)	
	C2	-0.01	1.06 (C2-C5)	-0.0446
			0.98 (C2-C6)	_
	C3	-0.07	0.85 (C3-C4)	-0.0203
	C4	+0.60	0.91 (C4-O2)	+2.6735
	C5	0.00	1.09 (C5-C5)	+0.0247

	C6	-0.28	1.21 (C6-C6)	-0.0312
	H1	+0.27	0.90 (H1-C1)	+0.0558
	H2	+0.29	0.87 (H2-C6)	+0.0385
Ca-IRMOF-14	Ca	+1.35	0.14-0.18 (Ca-O)	+1.6188
	01	-1.15	0.18 (O1-Ca)	-1.4955
	O2	-0.70	0.14 (O2-Ca)	-1.8283
	C1	-0.26	1.10 (C1-C2)	-0.0003
			1.09 (C1-C3)	
	C2	-0.01	1.06 (C2-C5)	-0.0057
			0.98 (C2-C6)	
	C3	-0.06	0.82 (C3-C4)	+0.0032
	C4	+0.66	0.89 (C4-O2)	+2.7311
	C5	0.00	1.09 (C5-C5)	-0.0182
	C6	-0.28	1.21 (C6-C6)	+0.0035
	H1	+0.30	0.87 (H1-C1)	+0.0411
	H2	+0.29	0.87 (H2-C6)	+0.0167
Sr-IRMOF-14	Sr	+1.39	0.14-0.17 (Sr-O)	+1.6118
	O1	-1.14	0.17 (O1-Sr)	-1.4597
	O2	-0.70	0.14 (O2-Sr)	-1.8202
	C1	-0.26	1.10 (C1-C2)	+0.0615
			1.09 (C1-C3)	
	C2	-0.01	1.06 (C2-C5)	+0.0098
			0.98 (C2-C6)	
	C3	-0.06	0.82 (C3-C4)	-0.0730
	C4	+0.64	0.89 (C4-O2)	+2.6979
	C5	0.00	1.09 (C5-C5)	-0.0578
	C6	-0.28	1.21 (C6-C6)	+0.0165
	H1	+0.30	0.87 (H1-C1)	+0.0303
	H2	+0.29	0.87 (H2-C6)	+0.0031
Ba-IRMOF-14	Ba	+1.37	0.11-0.16 (Ba-O)	+1.6127
	01	-1.08	0.16 (O1-Ba)	-1.4214
	02	-0.69	0.11 (O2-Ba)	-1.8273
	C1	-0.26	1.10 (C1-C2)	+0.0697
			1.09 (C1-C3)	
	C2	-0.01	1.06 (C2-C5)	-0.0109
			0.98 (C2-C6)	
	C3	-0.06	0.81 (C3-C4)	-0.0702
	C4	+0.64	0.89 (C4-O2)	+2.7244
	C5	0.00	1.09 (C5-C5)	-0.0535
	C6	-0.28	1.21 (C6-C6)	+0.0210
	H1	+0.29	0.87 (H1-C1)	+0.0294
	H2	+0.29	0.87 (H2-C6)	-0.0013

^a The atoms are numbered according to Fig. 1 and the partial density of states (PDOS) in Fig. 3 in the electronic structure section of the manuscript.