Electronic Supplementary Information (ESI)

Oxygen reduction activity of Pd-Mn₃O₄ nanoparticles and performance enhancement by voltammetrically accelerated degradation

Chang Hyuck Choi, Sung Hyeon Park, and Seong Ihl Woo*

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science

and Technology, Daejeon, 305-701, Republic of Korea

*E-mail: siwoo@kaist.ac.kr

Supporting information table of contents:

Fig. S1 Atomic ratio between Pd and Mn at the surface of the prepared nanoparticles calculated from XPS analysis.

Fig. S2 XPS-Pd_{3d} (left) and -Mn_{2p} (right) results of the prepared nanoparticles; (a) Pd, (b) Pd-Mn₃O₄-140 and (c) Pd-Mn₃O₄-180. The peaks in Pd_{3d} are assigned to Pd^o, PdO and PdO₂.

Fig. S3 Oxygen reduction reactivities of prepared catalysts in the (i) absence and (ii) presence of methanol in oxygen saturated 1M HClO₄ for (a) Pd/C, (b) Pd-Mn₃O₄-140/C, (c) Pd-Mn₃O₄-180/C and (d) Pt/C.

Fig. S4 Comparison of ADT results at (a) the 1^{st} cycle and (b) the 100^{th} cycles for the prepared catalysts; (I) Pd/C, (II) Pd-Mn₃O₄-140/C and (III) Pd-Mn₃O₄-180/C. The graph inserted in the right-hand corner in each Fig. shows the magnified results from 0.35 to 0.65 V (vs Ag/AgCl).

Fig. S5 ADT results at the 1^{st} , 50^{th} and 100^{th} cycles of (a) Pd/C, (b) Pd-Mn₃O₄-140/C and (c) Pd-Mn₃O₄-180/C. The graph inserted in the right-hand corner in each Fig. shows the magnified results from 0.35 to 0.65 V (vs Ag/AgCl).

Fig. S6 Schematic ADT-modification process on the surface of Pd- Mn_3O_4 -140 nanoparticles. Red and yellow spheres indicate the Mn_3O_4 and Pd, respectively, which construct Pd- Mn_3O_4 -140 nanoparticles.

Fig. S1 Atomic ratio between Pd and Mn at the surface of the prepared nanoparticles calculated from XPS analysis.

Fig. S2 XPS-Pd_{3d} (left) and -Mn_{2p} (right) results of the prepared nanoparticles; (a) Pd, (b) Pd-Mn₃O₄-140 and (c) Pd-Mn₃O₄-180. The peaks in Pd_{3d} are assigned to Pd^o, PdO and PdO₂.

Fig. S3 Oxygen reduction reactivities of prepared catalysts in the (i) absence and (ii) presence of methanol in oxygen saturated 1M HClO₄ for (a) Pd/C, (b) Pd-Mn₃O₄-140/C, (c) Pd-Mn₃O₄-180/C and (d) Pt/C.

Fig. S4 Comparison of ADT results at (a) the 1^{st} cycle and (b) the 100^{th} cycles for the prepared catalysts; (I) Pd/C, (II) Pd-Mn₃O₄-140/C and (III) Pd-Mn₃O₄-180/C. The graph inserted in the right-hand corner in each Fig. shows the magnified results from 0.35 to 0.65 V (vs Ag/AgCl).

Fig. S5 ADT results at the 1^{st} , 50^{th} and 100^{th} cycles of (a) Pd/C, (b) Pd-Mn₃O₄-140/C and (c) Pd-Mn₃O₄-180/C. The graph inserted in the right-hand corner in each Fig. shows the magnified results from 0.35 to 0.65 V (vs Ag/AgCl).

Fig. S6 Schematic ADT-modification process on the surface of Pd- Mn_3O_4 -140 nanoparticles. Red and yellow spheres indicate Mn_3O_4 and Pd atoms, respectively, which construct Pd- Mn_3O_4 -140 nanoparticles.

