Complexation behavior of trivalent Actinides and Lanthanides with 1,10-Phenanthroline-2,9-dicarboxylic acid based ligands: Insight from Hard Soft Acid Base Principle.

Debashree Manna and Tapan K Ghanty*

Electronic Supplementary Information

Contents:

(1) Table Captions

- 1. Table S1.Calculated M-L bond distances (Å) and complexation energies (eV) in gas (ΔE_g) and solvent (ΔE_s) phases for Am and Eu complexes with TZVP/BP86 method.
- 2. Table S2. Calculated Bond distances (Å) for [ML]⁺ complexes obtained from ADF software with TZ2P basis sets and BP86 exchange-correlation functional in the gas phase.
- **3.** Table S3. Effect of different Exchange correlation functionals (PBE and BLYP) on the M-L bond distance (d in Å) of [ML]⁺ complexes calculated using def-SV(P).
- 4. Table S4. Calculated Hardness and Softness values of the metal ions, dianionic form of the bare ligands and [M-PHEN]³⁺ complexes in gas and solvent phases using def-SV(P)/BP86 method.
- 5. Table S5. Calculated values of charges on donor center and Fukui indices for the nucleophilic attack on the donor sites in gas and solvent phases for the dianionic form of the bare ligands using def-SV(P)/BP86 method.
- 6. Table S6. Calculated values of Fukui indices for the electrophilic attack on the metal centre of [M-PHEN]³⁺ complexes in gas and solvent phases using def-SV(P)/BP86 method.
- 7. Table S7. Calculated atomic charges on metal and donor centers of Am and Eu complexes ([ML]⁺ and [ML₂]⁻¹) in Gas and Solvent phases using TZVP/BP86 method.
- 8. Table S8. Calculated atomic charges at metal centers (q_M) of the complexes [ML]⁺ for different exchange correlation functionals (PBE and BLYP) using def-SV(P)
- 9. Table S9. Calculated atomic charges on metal and donor centers of U and Ce complexes ([ML₂]⁻¹) in Gas and Solvent phases using TZVP/BP86 method

(2) Figure Captions

- 1. Figure S1. Molecular structure of [Metal-PHEN]³⁺ Complexes, where M= Am/Eu/U/Ce.
- 2. Figure S2. Valence level occupied molecular orbitals of a) Metal Complexes, [ML]⁺ and b) [Metal-PHEN]³⁺ Complexes, where M= Am/Eu/U/Ce, L= PDA, TCA1, TCA, THIO. PDA: 1,10-Phenanthroline-2,9-dicarboxylic acid;

TCA1: 1,10-Phenanthroline-2,9-mono-thio-dicarboxylic Acid (binding through Oxygen); TCA: 1,10-Phenanthroline-2,9-mono-thio-dicarboxylic Acid (binding through Sulphur); and THIO: 1,10-Phenanthroline-2,9-di-thio-dicarboxylic Acid.

Table S1.Calculated M-L bond distances (Å) and complexation energies (eV) in gas (ΔE_g) and solvent (ΔE_s) phases for Am and Eu complexes with TZVP/BP86 method

Complex	M-O/M-S	M-N	M-O/M-S	M-N	(ΔE_g)	(ΔE_s)
	Gas	Gas	Solvent	Solvent		
$[Am-PDA]^+$	2.182	2.506	2.275	2.523	-40.37	-5.62
$[Eu-PDA]^+$	2.227	2.527	2.329	2.562	-41.45	-3.63
$[Am-TCA1]^+$	2.223	2.499	2.299	2.519	-39.52	-5.14
[Eu-TCA1] ⁺	2.305	2.525	2.372	2.572	-40.98	-3.33
$[Am-TCA]^+$	2.638	2.576			-39.17	
[Eu-TCA] ⁺	2.679	2.575			-40.47	
$[Am-THIO]^+$	2.697	2.553			-38.84	
[Eu-THIO] ⁺	2.769	2.550			-40.39	

		Bond Distances						
	PDA		TCA1		TCA		THIO	
Ligand								
↓ Metal	d _{M-O} Å	d_{M-N} Å	d _{M-O} Å	d _{M-N} Å	d _{M-S} Å	d _{M-N} Å	d _{M-S} Å	d_{M-N} Å
Am	2.193	2.506	2.233	2.500	2.579	2.645	2.566	2.688
Eu	2.222	2.508	2.292	2.503	2.556	2.673	2.539	2.739
U	2.152	2.434	2.141	2.407	2.428	2.613	2.418	2.619
Ce	2.206	2.506	2.213	2.493	2.518	2.677	2.495	2.676

Table S2. Calculated Bond distances (d in Å) for [ML]⁺ complexes obtained from ADF software with TZ2P basis sets and BP86 exchange-correlation functional in the gas phase

Table S3. Eff	fect of different	Exchange co	rrelation functionals	(PBE and BLYP) on the
M-L bond di	stance (d in Å)	of [ML] ⁺ com	plexes calculated usi	ng def-SV(P)

LIGAND NAME	METAL	B-L	YP	PBE	
PDA		d _{M-O}	d _{M-N}	d _{M-O}	d _{M-N}
	Ce	2.223	2.571	2.207	2.545
	Eu	2.233	2.548	2.218	2.531
	U	2.172	2.474	2.147	2.438
	Am	2.198	2.533	2.179	2.508
TCA1	Ce	2.233	2.552	2.217	2.526
	Eu	2.307	2.547	2.292	2.523
	U	2.172	2.469	2.147	2.435
	Am	2.237	2.528	2.217	2.501
ТСА	Ce	2.660	2.534	2.654	2.534
	Eu	2.699	5.593	2.669	2.576
	U	2.651	2.459	2.607	2.410
	Am	2.663	2.603	2.629	2.576
THIO	Ce	2.700	2.533	2.682	2.529
	Eu	2.793	2.570	2.753	2.541
	U	2.653	2.439	2.640	2.435
	Am	2.727	2.580	2.688	2.556

Table S4. Calculated Hardness and Softness values of the metal ions, dianionic form of the bare ligands and [M-PHEN]³⁺ complexes in gas and solvent phases using def-SV(P)/BP86 method

COMPLEX	HARDNESS		SOFTNESS	
NAME	Gas Phase	Solv	Gas	Solv
			Phase	
Am^{3+}	0.526	0.270	1.901	3.708
Eu ³⁺	0.682	0.395	1.466	2.533
U^{3+}	0.497	0.258	2.013	3.869
Ce ³⁺	0.630	0.383	1.588	2.609
$[PDA]^{2}$	0.196	0.126	5.097	7.914
[TCA/TCA1] ²⁻	0.187	0.095	5.352	10.571
[THIO] ²⁻	0.179	0.099	5.581	10.062
PHEN	0.305	0.177	3.282	5.654
[Am-PHEN] ³⁺	0.176	0.077	5.680	12.943
[Eu-PHEN] ³⁺	0.179	0.072	5.596	13.964
[U-PHEN] ³⁺	0.237	0.135	4.216	7.429
[Ce-PHEN] ³⁺	0.231	0.119	4.324	8.435

Table S5. Calculated values of charges on donor center and Fukui indices for the nucleophilic attack on the donor sites in gas and solvent phases for the dianionic form of the bare ligands using def-SV(P)/BP86 method

GAS PHASE RESULTS:

LIGAND	q _N	q_0/q_s	$f_{k}^{-}(O)$ or	$f^{-}_{\mathbf{k}}$	$f_{\rm el}$ (O or	$f_{\rm el}({\rm N})$
NAME			$f_{k}^{-}(S)$	(N)	S)	
$[PDA]^{2-}$	-0.446	-0.691	0.142	0.040	3.017	3.137
[TCA1] ^{2–}	-0.445	-0.589	0.068	0.024	1.623	0.933
$[TCA]^{2-}$	-0.445	-0.450	0.290	0.024	2.273	0.933
[THIO] ²⁻	-0.439	-0.196	0.202	0.010	2.335	1.189

SOLV PHASE RESULTS:

LIGAND	q _N	q_0/q_s	$f_{k}^{-}(O)$ or	$f_{k}(N)$
NAME			$f_{k}^{-}(S)$	
[PDA] ²⁻	-0.496	-0.756	0.129	0.061
[TCA1] ²⁻	-0.493	-0.639	0.061	0.028
$[TCA]^{2-}$	-0.493	-0.491	0.331	0.028
[THIO] ²⁻	-0.496	-0.227	0.203	0.024

Table S6. Calculated values of Fukui indices for the electrophilic attack on the metal centre of [M-PHEN]³⁺ complexes in gas and solvent phases using def-SV(P)/BP86 method

COMPLEX NAME	$f_{k}^{+}(M)$		$f_{nu}(M)$
	Gas Phase	Solv phase	Gas Phase
[Am-PHEN] ³⁺	0.280	0.531	1.456
[Eu-PHEN] ³⁺	0.152	0.307	1.029
[U-PHEN] ³⁺	0.607	0.905	3.529
[Ce-PHEN] ³⁺	0.327	0.511	1.741

Table S7. Calculated atomic charges on metal and donor centers of Am and Eu complexes $([ML]^+ \text{ and } [ML_2]^{-1})$ in Gas and Solvent phases using TZVP/BP86 method

Complex	q _M	q _N	q_{O}/q_{S}	q _M	q _N	q_{O}/q_{S}
	Gas	Gas	Gas	Solvent	Solvent	Solvent
$[Am-PDA]^+$	2.049	-0.502	-0.758	2.325	-0.476	-0.759
$[Eu-PDA]^+$	1.960	-0.490	-0.738	2.284	-0.453	-0.729
$[Am-TCA1]^+$	2.008	-0.517	-0.726	2.309	-0.485	-0.702
[Eu-TCA1] ⁺	1.882	-0.504	-0.717	2.174	-0.565	-0.709
$[Am-(PDA)_2]^-$	1.724	-0.409	-0.677	1.722	-0.424	-0.701
$[Eu-(PDA)_2]^-$	1.640	-0.394	-0.667	1.647	-0.410	-0.690
$[Am-(TCA1)_2]^-$	1.806	-0.433	-0.634	1.838	-0.451	-0.646
$[Eu-(TCA1)_2]^-$	1.663	-0.449	-0.594	1.657	-0.460	-0.618
$[Am-(TCA)_2]^-$	0.835	-0.396	-0.153	0.901	-0.405	-0.230
$[Eu-(TCA)_2]^-$	0.878	-0.477	-0.184	0.886	-0.489	-0.237
$[Am-(THIO)_2]^-$	0.888	-0.441	0.025	0.910	-0.445	-0.033
[Eu-(THIO) ₂] ⁻	0.946	-0.429	0.009	0.975	-0.432	-0.051

			q	M				
	PDA		TCA1		TCA		THIO	
Ligand								
♦ Metal	B-LYP	PBE	B-LYP	PBE	BLYP	PBE	B-LYP	PBE
Am	2.011	2.010	1.958	1.965	1.596	1.590	1.563	1.568
Eu	1.920	1.918	1.834	1.843	1.564	1.557	1.554	1.542
U	2.116	2.118	2.109	2.116	1.526	1.484	1.508	1.479
Ce	2.065	2.059	2.043	2.042	1.616	1.607	1.620	1.606

Table S8. Calculated atomic charges at metal centers (q _M) of the complexes [ML] ⁺	for
different exchange correlation functionals (PBE and BLYP) using def-SV(P)	

Table S9. Calculated atomic charges on metal and donor centers of U and Ce complexes
([ML ₂] ⁻¹) in Gas and Solvent phases using TZVP/BP86 method

Complex	q _M	q _N	q_{O}/q_{S}	q _M	q _N	q_{O}/q_{S}
	Gas	Gas	Gas	Solvent	Solvent	Solvent
$[U-(PDA)_2]^-$	1.547	-0.386	-0.604	1.570	-0.400	-0.633
$[Ce-(PDA)_2]^-$	1.696	-0.396	-0.668	1.697	-0.413	-0.698
$[U-(TCA1)_2]^-$	1.566	-0.396	-0.572	1.571	-0.407	-0.587
$[Ce-(TCA1)_2]^-$	1.718	-0.413	-0.619	1.717	-0.424	-0.640
$[U-(TCA)_2]^-$	0.253	-0.381	0.002	0.472	-0.403	-0.118
$[Ce-(TCA)_2]^-$	0.920	-0.400	-0.174	0.987	-0.407	-0.283
$[U-(THIO)_2]^-$	0.342	-0.400	0.130	0.391	-0.404	0.080
[Ce-(THIO) ₂] ⁻	0.871	-0.406	0.007	0.958	-0.415	-0.087

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Figure S1. Molecular structure of Metal-PHEN Complexes, where M= Am/Eu/U/Ce.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

a)

Се-ТСА-НОМО	Се-ТНІО-НОМО
-------------	--------------

b)

Figure S2. Valence level occupied molecular orbitals of a) Metal Complexes, $[ML]^+$ b) $[M-PHEN]^{3+}$ complexes, where M= Am/Eu/U/Ce, L= PDA, TCA1, TCA, THIO. (1,10-Phenanthroline-2,9-dicarboxylic acid (PDA), 1,10-Phenanthroline-2,9-mono-thio dicarboxylic Acid (binding through Oxygen) (TCA1), 1,10-Phenanthroline-2,9-mono-thio dicarboxylic Acid (binding through Sulphur) (TCA) and 1,10-Phenanthroline-2,9-di-thiodicarboxylic Acid (THIO))