Stability and gelation behavior of bovine serum albumin pre-aggregates in

the presence of calcium chloride

-Electronic Supplementary Information

Hua Wu^{*}, Paolo Arosio, Olga Gennadievna Podolskaya, Dan Wei and Massimo Morbidelli

Institute for Chemical and Bioengineering,

Department of Chemistry and Applied Biosciences,

ETH Zurich, 8093 Zurich, Switzerland.

Phys. Chem. Chem. Phys.

A. Characterization of the BSA-PAs using TEM and AFM:

Samples for transmission electron microscopy (TEM) were loaded on a carbon grid (Quantifoil, DE) and stained with a 1% sodium phosphotungstate aqueous solution. Pictures were recorded on a FEI Morgagni 268. For atomic force microscopy (AFM), 10 μ L of 150 fold diluted samples were spotted on a freshly cleaved mica surface for 30 seconds before washing with Milli-Q (Milli-pore) deionized water to remove unattached material and gently drying under nitrogen flux. Samples were imaged at room temperature by a Nanoscope IIIa (Digital Instrument, USA) operating in tapping mode. Scan rate of 0.8 Hz and antimony doped silicon cantilevers with resonance frequency in the range 325-382 kHz and tip radius of 8 nm (Veeco, Plainview, NY, USA) were used.

B. Characterization of the BSA-PAs using SLS and DLS:

Fig. S1 The quantity, $KC/R_{ex}(0)$, the radius of gyration, $\langle R_g \rangle_0$, and the hydrodynamic radius, $\langle R_h \rangle_0$, of the BSA-PAs, estimated from the SLS and DLS experiments, as a function of the BSA concentration, *C*.

Fig. S2 Intensity curves of the original dispersion of the BSA-PAs measured by the SALS instrument at different BSA concentrations, C=0.05, 0.1, 1 and 2 g/L. Note that all the curves have been shifted vertically to overlap in the large q range.