Thermodynamics and Kinetics of NaAlH₄ Nanocluster Decomposition

Supporting Information

Raghunandan K. Bhakta,¹ Sean Maharrey,² Vitalie Stavila,² Aaron Highley,² Todd Alam,³ Eric Majzoub,⁴ and Mark Allendorf⁴*

¹ Energy Nanomaterials Dept., Sandia National Laboratories, Livermore, CA 94551-0969

² Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969

³ Sandia National Laboratories, Albuquerque, NM 87185

⁴ Dept. of Physics, University of Missouri, St. Louis, MO 63130

mdallen@sandia.gov

STMBMS (Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry)

This instrument allows the concentration and release rate of each gas-phase species in a reaction cell (Fig. **S1**) to be measured as a function of time by correlating the ion signals at different m/z values measured with a mass spectrometer with the rate of force change measured by a micro balance at any instant. A small sample of material ($\sim 10 \text{ mg}$) is placed in an alumina reaction cell that was then mounted on a thermocouple probe, which was seated on a microbalance. The reaction cell was enclosed in a high vacuum environment ($<10^{-6}$ Torr) and was radiatively heated by a bifilar-wound tungsten wire on an alumina tube. The molecules from the gaseous mixture in the reaction cell exit through an orifice in the cap of the reaction cell and traverse two beam-defining orifices before entering the electron-bombardment ionizer of the mass spectrometer where the ions were created by collisions of 20-eV electrons with the different molecules in the gas flow. The background pressure in the vacuum chamber housing the reaction cell and background molecules prior to entering the MBMS detection system. The different m/z value ions were selected with a quadrupole mass filter and counted with an ion counter. The gas flow was modulated with a chopping wheel and only the modulated ion signal was recorded.

Figure S1. Cross section of reaction cells used in STMBMS experiments.

The reaction conditions within the cell are controlled and varied by adjusting the rate at which gas exits the reaction cell. The rate of flow of gas from the cell, and the corresponding containment time of gas within the cell, are a function of the orifice area, the free volume within the reaction cell, and the characteristics of the flow of gas through the orifice. Orifices spanning a broad range of diameters (1000 to 2.5μ m) can be used in experiments to span a broad range of the confined gas parameter space. This allows the partial pressures of the gases contained within the reaction cell to be varied between 10^{-5} and 1000 Torr. Orifices with diameters ranging from 1000 to 35μ m in diameter use an alumina cap and orifices with the 25μ m and smaller use the gold foil/rubber o-ring seal (Fig **S1**). For these experiments, 1000 and 400 μ m orifices were used for evaporative drying of solvents, while 25 and 10 μ m orifices were used for probing the kinetics of the hydrogen release process.

In a typical experiment, the sample is loaded into the reaction cell within an inert atmosphere glove box, fitted with the cap and then transported under an inert atmosphere and placed in the STMBMS instrument. The STMBMS instrument is then evacuated and data acquisition commences

approximately one hour later. The samples are either heated at a low isothermal temperature (110°C) to evolve solvents, or a series of isothermal steps spanning above and below the melting point are used. The data have been quantified using the ion signal representing the main species that accounts for the mass loss: H_2 .

Additional sample characterization data

Figure S2. X-ray diffraction of Cu-BTC MOF in comparison with infiltrated material NaAlH₄@ Cu-BTC and pure NaAlH₄.

Figure S3. FTIR spectrum of neat Cu-BTC MOF (Black) and NaAlH₄@Cu-BTC MOF (Blue), * indicate the bands assigned to [AlH₄]⁻.

Figure S4. ²⁷Al MAS NMR spectra of neat NaAlH₄.

Figure S5. The ²⁷Al MAS NMR of of NaAlH₄@Cu-BTC, NaAlH₄ has a chemical shift of 94.6ppm. Some Al₂O₃ impurity peaks are also observed at 8.4, 35.5 and 63.6 ppm respectively.

Figure S6. ²³Na MAS NMR spectra of neat NaAlH₄ and NaAlH₄@Cu-BTC.

Figure S7. Powder XRD analyses of NaAlH₄ heated at 180 $^{\circ}$ C indicating reflections due to Al and Na₃AlH₆.

Figure S8. Powder XRD analyses of NaAlH₄ heated at 290 °C indicating reflections due to Al and NaH.

Bulk NaAlH₄ hydrogen desorption thermodynamics and kinetics

The thermodynamic and kinetic behavior of bulk NaAlH₄ is discussed here, so that the substantial differences between this material and NaAlH₄@Cu-BTC are apparent. As indicated in Figure S-9A, the decomposition reaction was observed over the course of a two-segment temperature program in which the temperature was increased in 10 °C steps, first to maximum of 210 °C, followed by a second segment to 315 °C. Separate experiments were run with 5°C isothermal steps in the first thermal segment to capture additional details of intermediate steps involved in reaction (1). These data were used for the corresponding quasi-equilibrium and kinetic analyses shown in Figures 3 and 4, respectively.

We observe two distinct decomposition steps, illustrated by the weight loss data shown in Sup. Info.Figure S-9A and the corresponding evolution of H₂ in Sup. Info.Figs. S-9C and S-9D. Based on the computed sample stoichiometry as a function of time, these steps can be correlated with the global reactions (1) and (2). In the following discussion, we will refer to the multi-step mechanisms underlying reactions (1) and (2) as decomposition process 1 (DP-1) and decomposition process 2 (DP-2), so that we can differentiate between the detailed kinetic processes and the global reactions. DP-1 encompasses all of the first thermal segment and up to ~230 °C in the second segment. During the cooling portion of segment 1 (plateau between ~ 40,000 – 70,000 s), DP-1 is effectively 'quenched,' then resumes when the temperature reaches 210° C during the heating portion of segment 2. DP-1 is complete during the 230°C isotherm (81000-85000 s). The hydrogen stoichiometry at this point is ~2.1, which is consistent with the change expected from reaction (1) and results in formation of Na₃AlH₆, as seen in the PXRD pattern (Sup. figure S-7).

The onset of DP-2 occurs during the 260 °C isotherm of the second heating segment (95000-99000 s in Sup. Figure S-9) and continues to the maximum temperature of the experiment (315 °C). This process produces a net loss of 25% of the initial hydrogen, resulting in an overall reduction in the condensed-phase hydrogen stoichiometry from 2.1 to 1.19. This is again consistent with the known second step in NaAlH₄ decomposition (reaction (2)), leading to formation of NaH (see PXRD in figure S-8). The final

hydrogen stoichiometry of ~1.19 suggests that a small amount of Na_3AlH_6 remains unreacted at the end of the experiment, which was limited to 320°C because of the Kalrez o-rings used to seal the reaction cell.

The rate of H₂ release throughout the course of the experiment, shown in Figure Sup. Figure S-9B – 9D, illustrates the complex temperature-dependent kinetic behavior that this hydride undergoes. It appears that during DP-1 at least four different chemical events are occurring (Sup. Figure S-9C). Three of these are kinetically limited (indicated by a time-dependent H₂ GER during the isothermal step), while the fourth is at quasi-equilibrium (constant GER during the isothermal step). Although we lack the detailed phase and microstructural information required to definitively assign a mechanism to each of these, the shape of the H_2 GER curve at each isothermal step provides a qualitative indication of the type of reaction process occurring at that temperature. Initially, the H₂ release resembles a nucleation and growth process (see kinetic analysis below). At < 165 °C (0 – 17000 s), only 0.35 equivalents H₂ are lost from the sample. A second process begins at ~170°C (17500 – 19000 s); here, the time-dependent GER is indicative of solid-solid phase-transitions (based on previous systems investigated by STMBMS). This is followed by a third process (20500 - 22500 s) that is consistent with incongruent melting at the reported NaAlH₄ melting point of 181°C.⁴⁵ In this step, virtually all of the remaining hydrogen corresponding to process (1) is released. Finally, a quasi-equilibrium process occurs at 190 – 200 °C (26500 – 33500 s). Note that, since the stoichometry indicates that some NaAlH₄ remains unreacted at the conclusion of the first heating segment, this quasi-equilibrium likely involves solid and liquid-phase NaAlH₄ as well as H₂.

In contrast, DP-2, which commences during the second heating segment at temperatures 260 °C ($t \ge$ 95,000 s; Sup. Figure S-9D) displays only two processes: a quasi-equilibrium at temperatures below 290 °C (95000 – 113000 s) and a nucleation and growth stage at 300-310 °C (114000 -120000 s). It therefore appears that, in contrast with DP-1, in which improved mass transport resulting from the formation of a liquid phase accelerates decomposition, the decomposition of these products occurs without melting. The segment (2) data display no evidence of a melting transition, nor of the known α - β phase transition that Na₃AlH₆ is known to undergo at 252 °C. The latter is observed only at high heating rates (20°C/minute),⁵² which are not achieved in our experiments.

The quasi-equilibrium behavior seen in DP-1 (T = 190 - 210 °C in segment (1) and T = 185-210 °C in segment (2); Table ST1 and ST2 can be analyzed using the van't Hoff equation to obtain the enthalpy of H₂ desorption ΔH_d° , as shown in Figure 3. The values obtained from the first and second heating segments are 37.3 kJ•(mol H₂)⁻¹ and 35.2 kJ•(mol H₂)⁻¹, respectively, which agree very well with the value reported for reaction (1) in the absence of a catalyst (36.7 kJ•(mol H₂)⁻¹).³⁵ The quasi-equilibrium behavior for DP-2 (T = 260 - 290 °C in segment (2); Table ST1) gives a reaction enthalpy of 21.2 kJ•(mol H₂)⁻¹ for reaction (2) (Figure S10), which also is in good agreement with the literature value of 23.2 kJ•(mol H₂)⁻¹.³⁵

Figure S9A. Reaction enthalpies for the equilibrium-like hydrogen release sequence for Bulk NaAlH₄. • Data from first heating segment ΔH_d = 37.3 kJ•(mol H₂)⁻¹. • Data from second heating segment below 220°C, ΔH_d = 35.2 kJ•(mol H₂)⁻¹.

Figure S9B. Kinetic analysis of H₂ desorption for bulk NaAlH₄, nucleation and growth model fit. $E_a = 98.2 \text{ kJ} \cdot (\text{mol H}_2)^{-1}$ (Error bars are too small to be seen).

Figure S10. Reaction enthalpy for the quasi-equilibrium hydrogen release from bulk NaAlH₄. • Data from second heating segment above 260° C ΔH_d = 21.2 kJ•(mol H₂)⁻¹.

Figure S11. Powder XRD analyses of reaction intermediates of NaAlH₄@Cu-BTC heated at 140 and 160 °C do not indicate any reflections due to NaAlH₄ or Na₃AlH₆.

Figure S12. X-ray diffraction of Cu-BTC MOF in comparison with infiltrated material NaAlH₄@ Cu-BTC after H₂ desorption. Dotted lines indicate Aluminum reflections.

Figure S13. ²⁷Al MAS NMR of NaAlH₄@Cu₃(BTC)₂ after desorption. The three peaks at 8.4, 35.5, and 63.6ppm are assigned to Al₂O₃, which forms when the decomposition product Al reacts with O₂ during brief exposure to the air during sample transfer.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2012

Figure S14. ²³Na MAS NMR of NaAlH₄@Cu₃(BTC)₂ after H₂ desorption shows a broad peak at 19.3 ppm, which represents NaH. This was confirmed by running a ²³Na NMR experiment on NaH.

Figure S15. Solid state NMR analyses of reaction intermediates of NaAlH₄@Cu-BTC heated at 135C do not indicate any signal due to Na₃AlH₆.

Figure S16. Schematic figure showing 8 formula units of NaAlH₄ inside the large pore of Cu-BTC MOF oriented along XZ and YZ axes.

Figure S17. Powder XRD of CuBTC after attempt to rehydrogenate under 120bar H_2 and 150 °C indicating collapse of the framework, Only reflections due to copper are seen.

Sup. Figure **S18**. Typical examples of fits to solid-state reaction models of the STMBMS H₂ desorption data. Left: 1-D diffusion model for NaAlH₄@Cu-BTC. Right: nucleation and growth model for bulk NaAlH₄. In both plots, the solid line (red) is the model fit for the function is indicated above the plot. Data points (blue symbols) are the quantified data corresponding to one measured rate constant at particular temperature isotherm in the data set to illustrate quality of the fit to the data. For example, the rate constant *k* extracted from plots such as those above corresponds to a single data point shown in Figure 6. To obtain the fits, the raw GER data were converted from a function of time to a function of alpha (the extent of reaction variable) using the mass loss within a given temperature step. The data were also scaled by the k-value for that particular temperature step so they can be superimposed on the generic model; i.e., the model is a function of F(a) = f(a), while the data are a function D(a) = k(T)f(a). Finally, the size of the data points is representative of ~ 50% of the error bars for each data set. Each

isotherm was fit to a total of 16 different solid-state reaction models. A cutoff for R^2 of 0.98 was used accept a given fit for further analysis. The data represented by the 1-D diffusion model and the nucleation and growth model have R^2 values higher than 0.98, while the other 15 models for each data set were rejected for further analysis as none showed a fit better than 0.88.

Time (s)	Temperature (°C) Process	Reaction Energy (kJ/Mol H2)		Hydrogen Stoichiometry	
	(-)		ΔEa	ΔHd	Change
	F	irst heating se	gment		
0 - 500	25				
2000 - 7000	150				
7300 - 11300	160				
11600 - 15600	165				
15900 - 19900	170				
20200 - 24200	175				
24380 - 28380	178				
28620 - 32620	182				
32800 - 36800	185	Quasi-		37.3	3.7 - 2.4
37100 - 41100	190	Equilibrium			
50000 - 54000	205				
54300 - 58300	210				
58600 - 62600	205	-			
62900 - 66900	200	Nucleation	98.2		23-21
67200 - 71200	195	& Growth	50.2		2.5 2.1
71500 - 75500	190				
75800 - 79800	185				
80100 - 84100	190				
	Se	cond heating s	segment	I	
84400 - 88400	195				
88700 - 92700	200				
93000 - 97000	205				
97300 - 101300	210				
101600 - 105600	205				
105900 - 109900	200	Quasi-			
110200 - 114200	195	Equilibrium		35.2	2.05 - 2.01
114500 - 118500	190	1		1	
118800 - 122800	185	1		1	
123100 - 127100	180				
127400 - 131400	175				

Table S-1. Temperature profile used for STMBMS experiment on bulk NaAlH₄.

131700 - 135700	170		
136000 - 140000	165		

Table S-2. Temperature profile used for STMBMS experiment on bulk $NaAlH_4$ to get more information on quasi equilibrium process between 26-290C.

Time (s)	Temperature (°C)	Process	R	eaction Energy (kJ/Mol H ₂)	Hydrogen Stoichiometry		
	(-)		ΔE_a	ΔH _d	Change		
First heating segment							
0 - 500	30						
1820 - 6820	140						
7420 - 11420	150						
12020 - 16020	160						
16620 - 20620	170						
21220 - 25220	180						
25820 - 29820	190						
30420 - 34420	200						
35020 - 39020	210						
39620 - 43620	200						
44220 - 48220	190						
48820 - 52820	180						
53420 - 57420	170						
Second heating segment							
58020 - 62020	180						
62620 - 66620	190						
67220 - 71220	200						
71820 - 75820	210						
76420 - 80420	220						
81020 - 85020	230						
85620 - 89620	240						
90220 - 94220	250						
94820 - 98820	260						
99420 - 103420	270	Quasi-		21.2	2.05 - 1.71		
104020 - 108020	280	Equilibrium					
108620 - 112620	290			-			
113220 - 117220	300						
117820 - 121820	310						
122120 - 126120	315						
126420 - 130420	310						
131020 - 135020	300						
135620 - 139620	290						
140220 - 144220	280						
144820 - 148820	270						

149420 - 153420	260		
154020 - 158020	250		
158620 - 162620	240		
163220 - 167220	230		
167820 - 171820	220		
172420 - 176420	210		
177020 - 181020	200		
181620 - 185620	190		
186220 - 190220	180		
190820 - 194820	170		
195690	25		

Table S-3. Temperature profile used for STI	MBMS experiment on	NaAlH ₄ @Cu-BTC.
---	--------------------	-----------------------------

Time (s)	e (s) Temperature (°C)		Process (kJ/		Hydrogen Stoichiometry		
			ΔE_a	ΔH_d	Change		
	First heating segment						
0 - 500	25						
3050 - 8050	110						
8650 - 12650	120	Equilibrium	ו –	47.3	3.95 - 3.78		
13250 - 17250	130						
17550 - 21550	135						
21850 - 25850	140						
26150 - 30150	145	1-D	53.3		3.75 - 2.95		
30450 - 34450	150	Diffusion					
34750 - 38750	155	-					
39050 - 43050	160	-					
43350 - 47350	165						
47650 - 51650	170						
51950 - 55950	165						
56250 - 60250	160						
60550 - 64550	155						
64850 - 68850	150						
69150 - 73150	145						
73450 - 77450	140						
77750 - 81750	135						
82050 - 86050	130						
86650 - 90650	120						
91250 - 95250	110						
Second heating segment							
95850 - 99850	120						
100450 - 104450	130						
105050 - 109050	140						
109650 - 113650	150	Quasi- Equilibrium	1	45.6	2.05 - 1.92		
114250 - 118250	160						

118550 - 122550	165		
122850 - 126850	170		
127150 - 131150	175		
131330 - 135330	178		
135570 - 139570	182		
139750 - 143750	185		
144050 - 148050	190		
148350 - 152350	195		
152650 - 156650	200		
156950 - 160950	205		
161250 - 165250	210		
165550 - 169550	205		
169850 - 173850	200		
174150 - 178150	195		
178450 - 182450	190		
182750 - 186750	185		
187170 - 191170	178		
192088	25		