Section 1: Computational Details

The DFT-D calculations were carried out using the ADF software package^{1,2}. The revPBE gradient density functional³⁻⁶ was employed, and Grimme's latest dispersion corrected functional⁷ was used to account for the dispersion forces. Tests were performed to determine the effect of the basis set on the binding energy of benzene to an Ag(111) slab, see Section 3 below. For the results given in the main text, the basis functions on all of the atoms consisted of a valence triple- ζ Slater-type basis set with polarization functions (TZP) from the ADF basis-set library. The core shells up to 1s, 1s, 3p and 4p of carbon, nitrogen, copper and silver, respectively, were kept frozen. In situations where SCF convergence issues arose, the steepest decent method was employed. Both a Mulliken and a Hirshfeld charge analysis were used to determine the magnitude of the charge transferred between the adsorbate and the metal surface.

The Cu(111) and Ag(111) surfaces were simulated by using a finite slab, or cluster, comprised of 166 metal atoms and the experimental lattice parameter of 3.614 Å⁸ and 4.086 Å⁸, respectfully. The clusters were composed of two layers with the top layer containing 91 atoms and the bottom layer containing 75 atoms. During the structural relaxation, the top layer of the slabs was allowed to relax. Next, a geometry optimization was performed where the 2H-TPP was placed on-top of the optimized metal surface, and the coordinates of the cluster atoms were kept fixed. This procedure was found to give binding energies (BEs) in reasonable agreement with experimental data obtained for benzene adsorbed on Ag(111)/Cu(111) (see Section 3 of the Supplementary Information, SI). For select systems, the basis set superposition error (BSSE) was calculated using the Counterpoise method.

To clarify the nature of the bonding, a fragment orbital analysis was employed using the ADF program¹. The fragments used were those of the metal cluster and distorted adsorbate (as found in the optimized structures **S3**, **S5**, **S6** and **S7**). The composition of the molecular orbitals of the metal-adsorbate system was decomposed into terms of occupied and unoccupied orbitals of the finite metal cluster and of the adsorbate. From this analysis, charge density difference (CDD) contours and isosurfaces were plotted using the ADFview program. The CDD given below are the calculated differences between the charge density of the metal-organic systems and that of the isolated fragments. They illustrate how the charge density changes upon adsorption of the molecule to the metal surface.

Section 2: 2H-TPP Dimer Binding Energies

The coordinates for the adjacent 2H-TPP dimer (S1) and the sandwich 2H-TPP dimer (S2) can be found in Section 5 of the SI. The basis functions on all of the atoms consisted of a valence triple- ζ Slater-type basis set with polarization functions (TZP) from the ADF basis-set library. The core shells up to 1s of carbon and nitrogen were kept frozen. The binding energy (BE) of S1 was calculated as being 0.03 eV. The binding energy of S2 was found to be 1.12 eV.

Figure 1: Illustrations of the geometries of the (a) adjacent (S1), and (b) sandwich (S2) 2H-TPP dimer.

The most stable benzene dimer $(S8)^9$ has a geometry which is very similar to that of S2. Using the computational settings described herein, the binding energy for the benzene dimer was found to be 0.05 eV, which is somewhat smaller than that computed by high-level CCSD(T) calculations⁹ for the parallel-displaced benzene dimer (0.09 to 0.12 eV).

Section 3: Benzene on Various Copper/Silver Surfaces

The geometries of benzene adsorbed to metal clusters (models for various metal surfaces) were optimized, and the BEs computed. In the following geometry optimizations the bottom layer of metal atoms was kept fixed, but the top layer of atoms was allowed to relax. For benzene adsorbed on the Ag(111) surface computations were performed using different basis sets, and varying the number of atoms in the cluster. The BE, given below in Table 1, were calculated by:

$BE = E_{(Organic Molecule)} + E_{(Metal Slab)} - E_{(Organic-Metal Complex)}$

1	1	1
		۱.
١.	T	,

System	# of Surface Atoms	Adsorbate Basis	Surface Basis	BE (eV)
Benzene-Ag(111)	64	DZP	DZ	1.16
Benzene-Ag(111)	64	TZP	DZ	0.98
Benzene-Ag(111)	64	DZP	TZP	1.10
Benzene-Ag(111)	64	TZP	TZP	0.87
Benzene-Ag(111)	166	TZP	TZP	0.77
		Experimental BE	7	0.56

Table 1: The binding energy (BE) of benzene to Ag(111) using various basis sets and slab sizes^a

^a DZ denotes a double- ζ basis; DZP is a double- ζ basis with polarization functions; TZP is a triple- ζ basis set with polarization functions.

A TZP basis set on the adsorbate atoms and the surface atoms was found to give a BE which was closest to the experimental values. Moreover, as the number of atoms used to simulate the metallic slab increased, the computed BE was found to approach the experimental BE.

The computed BE between benzene and various copper/silver surfaces are given below in Table 2. The results shown in Table 1 and 2 illustrate that computational method employed overestimates the BE for these types of systems, in-line with the original benchmark calculations⁷. The BSSE lowers the computed BEs slightly. For example, the BSSE-corrected BE of benzene on Cu(111) and Ag(111) with 64 atoms in the cluster was found to be 1.11 and 0.79 eV, respectfully.

The optimized coordinates of the Ag(111)-benzene system with 64 silver atoms (S3), the Ag(111)-benzene system with 166 silver atoms (S4), and the Cu(111)-benzene system (S5) can be found in Section 5 of the SI.

U	Calculated	Experimental
System	BE (eV)	BE (eV)
Cu(100)-Benzene ^b	1.03	-
Cu(110)-Benzene ^c	1.27	0.73 ¹⁰
Cu(111)-Benzene ^d	1.28	0.59 ¹¹
Ag(100)-Benzene ^b	0.67	-
Ag(111)-Benzene ^d	0.87	0.56 ⁷

Table 2: The binding energy (BE) of benzene to various copper and silver surfaces^a

^a TZP basis sets were use for all of the atoms; ^b Slab contained 74 atoms; ^c Slab contained 134 atoms; ^d Slab contained 64 atoms.

The differences between the charge densities of the isolated fragments and that of the metal-adsorbate system were calculated. In the charge density difference (CDD) isosurfaces provided herein, red denotes a gain of electrons, and blue a loss of electrons upon adsorption. Charge density difference isosurfaces were calculated for the S3 and S5 structures (Figures 2a and 2b).

Figure 2b is illustrative of the "Pillow Effect", which is caused by Pauli repulsion between the metal and adsorbate electron densities¹². The charge redistribution is also a result of electron donation from the HOMO of benzene to the metal surface, and back-donation from the surface to the benzene LUMO (the Dewar, Chatt, and Duncason model which has, for example, been applied to benzene on $Cu(110)^{13}$). A Mulliken analysis illustrates that for both **S3** and **S5** there is a charge transfer of 0.19e to the metal cluster, whereas the Hirschfeld scheme yields 0.16e, and 0.27e for Ag(111) and Cu(111), respectively. Mulliken charges are strongly basis set dependent, and the Hirschfeld method may provide results which are more in-line with chemical intuition since the promolecular fragments are the same as those employed in our CDD calculations. The benzene to Ag/Cu surface distance was found to be 3.84/2.76 angstroms. The closer the adsorbate is to the metal, the stronger the binding energy and the more pronounced is the CDD.

Figure 2: Charge density difference (CDD) isosurfaces of benzene on an: (a) Ag(111) (**S3**), and (b) Cu(111) slab (**S5**). The slabs contained 64 atoms and the isovalues are +/- 0.0003 au.

Section 4: Cu(111)/2H-TPP and Ag(111)/2H-TPP

Geometry optimizations were performed as previously described in Section 1, with the Cu(111) and Ag(111) clusters both containing 166 atoms. The coordinates of the following systems can be found in Section 5, and the BE are given in Table 3.

Table 3: Binding energies (BE) and structural parameters of 2H-TPP with Cu(111) and Ag(111)^a

System	BE (eV) ^b	Surface Charge (Mulliken)	Surface Charge (Hirschfeld)	Dihedral	N1-surface Distance (Å)	N2-Surface Distance (Å)
Cu(111						
)	6.19/5.31	-1.69e	-0.89e	38.3	3.05	3.05
Ag(111						
)	3.44/3.07	-1.45e	-0.46e	42.1	3.30	3.29

^a The atoms C1, C2, C3 and C4 which define the dihedral angle given are illustrated in Figure 3. The N1 and N2 atoms are defined in Figure 3.

^b The uncorrected/BSSE corrected binding energies.

Figure 3: The carbon atoms which define the dihedral angle, and the nitrogen atoms given in Table 3.

Figure 4: Charge density difference (CDD) isosurfaces of 2H-TPP on an: (a) Cu(111) (**S6**), and (b) Ag(111) slab (**S7**). The slabs contained 166 atoms and the isovalues are $\pm - 0.0003$ au.

Table 4: Bonding Energy (eV) decomposition analysis for 2H-TPP on Cu(111) and Ag(111).

System	Pauli	Electrostatic	Steric Interaction	Orbital Interaction	Dispersion	Geometric Distortion
Cu(111		-7.84				
)	15.27		7.43	-5.07	-9.15	0.62
Ag(111	8.60	-4.44	4.16	-2.36	-5.70	0.53

, ,			
,			

The 2H-TPP molecule distorts as it approaches the Cu(111) and Ag(111) surfaces. The phenyl arms rotate so that the dihedral angle, as defined in Figure 3, changes (for free 2H-TPP we compute the dihedral angle to be 62.7 degrees). In both cases the phenyl arms are oriented nearly parallel to the metal surface, with an angle of 26/30 degrees to Cu(111)/Ag(111). The ends of the pyrrole rings that contain N1 distort downwards, and the pyrrole rings that contain N2 distort upwards due to the rotation of the phenyl arms of the 2H-TPP.

In accordance with our findings for benzene on Ag(111)/Cu(111), the Mulliken charges for the two systems were about the same even though visual inspection of the CDD (Figures 4 and 5) appears to indicate a larger charge redistribution and charge build-up on the Cu surface. The Hirschfeld charge analysis, on the other hand, shows that there is a larger amount of charge transferred to Cu(111) than to Ag(111) suggesting that the repulsion between the positively charged 2H-TPP molecules may hinder their self-assembly. It is likely that the Hirschfeld scheme provides better results for the systems we are considering¹⁹.

The BSSE uncorrected bonding energy can be decomposed as¹⁴:

$$BE = DE_{bond} = DE_{geo} + DE_{steric} + DE_{oi} + DE_{disp}$$
⁽²⁾

where DE_{geo} is the energy necessary to distort the geometry of the 2H-TPP to the one in the total system, DE_{steric} , the steric repulsion, is a sum of the Pauli repulsion and the classical electrostatic interaction between the interpenetrating charge densities of the fragments, DE_{oi} is the orbital interaction and DE_{disp} the dispersion energy. These values are provided in Table 4.

The distances between N1 and N2 and the metal surface is larger for the Ag(111) than for the Cu(111) slab, and the resulting charge redistribution upon absorption is smaller as evidenced in Figures 4 and 5. The stronger adsorbate-metal interaction for the Cu(111) system correlates with the larger magnitude of the steric, orbital and dispersion interaction energies, and the larger energy necessary to distort the 2H-TPP molecule as it adsorbs to the metal surface.

To clarify the nature of the bonding between 2H-TPP and Cu(111)/Ag(111), we calculated the composition of the molecular orbitals (MOs) in terms of the occupied and unoccupied MOs of the molecule and the metal cluster. Based upon the results of this analysis approximate interaction diagrams, provided in Fig. 6, can be constructed using the thinking outlined in Refs. [15-18].

These diagrams illustrate that the bonding is similar to benzene, with charge transfer from the 2H-TPP HOMO to the surface, and back donation into the 2H-TPP LUMO. Because of the shorter metaladsorbate distance, the dispersion of the HOMO/metal and LUMO/metal bands is larger for Cu(111). The calculation of the crystal orbital overlap population (COOP) would be necessary for a more indepth analysis of the bonding in the two systems. **Figure 5**: Charge density difference (CDD) contours of 2H-TPP on an: (a) Cu(111) (**S6**), and (b) Ag(111) slab (**S7**). The slabs contained 166 atoms, and the settings used to obtain the contours in both plots was the same.

Figure 6: Schematic interaction diagram of 2H-TPP with the a) Ag(111) and b) Cu(111) surface. The Fermi level has been set to zero. Isosurfaces of the HOMO and LUMO of the 2H-TPP molecule (+/-0.03 a.u.) are displayed in red/pink and green/yellow. The blue/red rectangles represent the width of the bands formed from the overlap of metal bands with the 2H-TPP HOMO/LUMO. On Cu some of the metal/LUMO bands are off the scale of this figure, as denoted by the dashed line. Note that the bandwidths of the metals extend to higher/lower energies.

Section 5: Coordinates S1-Adjacent 2H-TPP Dimer

<u>51-</u>	<u>Adjacent 2H-1</u>	<u>PP Dimer</u>	
E= -	1043.98//584	is ev Symm	netry: C_{2v}
H	-14.632016	-6.294225	0.013682
Н	-14.632016	6.294225	0.013682
С	-13.855608	-5.525492	0.006242
С	-13.855608	5.525492	0.006242
Η	-13.467074	1.347669	0.173646
Η	-13.467074	-1.347669	0.173646
Н	-14.458660	-4.700141	-1.906099
Н	-14.458660	4.700141	-1.906099
С	-13.759877	-4.629054	-1.069030
C	-13 759877	4 629054	-1 069030
Č	-12 947725	-5 428541	1 071674
C	-12 947725	5 428541	1.071674
н	-13.017334	-6 110126	1 915801
и П	12 017224	6 110126	1.015801
Γ	-13.01/334	0.119120	0.001967
C	-12.009272	-0.088133	0.091807
	-12.009272	0.088133	0.09180/
П	-12.0803/4	-2.943943	-1.912285
H	-12.6863/4	2.943943	-1.912285
C	-12./64/06	-3.642393	-1.0/6429
C	-12.764706	3.642393	-1.076429
С	-11.952706	-4.441989	1.061912
С	-11.952706	4.441989	1.061912
Н	-11.246395	-4.362053	1.890813
Η	-11.246395	4.362053	1.890813
С	-11.848226	-3.535428	-0.012034
С	-11.848226	3.535428	-0.012034
С	-11.246159	1.136555	-0.005931
С	-11.246159	-1.136555	-0.005931
С	-10.791091	-2.472192	-0.016819
С	-10.791091	2.472192	-0.016819
Ν	-10.462042	0.000000	-0.060579
Η	-9.683937	-5.131056	-0.226769
Н	-9.683937	5.131056	-0.226769
Н	-9.444133	0.000000	-0.071925
С	-9.432382	-2.875554	-0.027725
С	-9.432382	2.875554	-0.027725
Č	-9 018772	-4 277214	-0 133434
Ċ	-9 018772	4 277214	-0 133434
Ň	-8 339417	-2 041025	0.030416
N	-8 339417	2.011025	0.030416
$\hat{\mathbf{C}}$	-7.657112	-4 276954	_0 123939
C	-7 657112	4 276051 1 276051	_0 123030
C	-7.05/112	-7 875171	-0.123939
	7 7 1.243370	-2.0/3124	0.015566
	-1.2433/8	2.0/3124	-0.013300
п	-/.2344/1	0.000000	-0.040/00

Н	-6.990332	-5.130155	-0.207176
Н	-6.990332	5.130155	-0.207176
Ν	-6.216737	0.000000	-0.035577
С	-5.887630	-2.471290	0.006142
С	-5.887630	2.471290	0.006142
С	-5.432601	-1.136302	0.017972
С	-5.432601	1.136302	0.017972
С	-4.829672	-3.534150	0.021180
С	-4.829672	3.534150	0.021180
Η	-4.003367	-2.972578	-1.892724
Η	-4.003367	2.972578	-1.892724
С	-3.920522	-3.658534	-1.047367
С	-3.920522	3.658534	-1.047367
С	-4.717910	-4.421836	1.109777
С	-4.717910	4.421836	1.109777
Н	-5.417917	-4.327169	1.943165
Н	-5.417917	4.327169	1.943165
С	-4.069503	-0.688135	0.114180
С	-4.069503	0.688135	0.114180
Н	-2.234924	-4.731537	-1.872802
Н	-2.234924	4.731537	-1.872802
С	-2.925351	-4.645308	-1.030518
С	-2.925351	4.645308	-1.030518
С	-3.722170	-5.407772	1.129407
С	-3.722170	5.407772	1.129407
Н	-3.646927	-6.083479	1.984453
Н	-3.646927	6.083479	1.984453
Н	-3.212139	-1.347942	0.193526
Н	-3.212139	1.347942	0.193526
С	-2.821721	-5.522984	0.059285
С	-2.821721	5.522984	0.059285
Н	-2.044879	-6.291260	0.075238
Н	-2.044879	6.291260	0.075238
Н	2.044879	-6.291260	0.075238
Н	2.044879	6.291260	0.075238
С	2.821721	-5.522984	0.059285
С	2.821721	5.522984	0.059285
Н	3.212139	1.347942	0.193526
Н	3.212139	-1.347942	0.193526
Н	3.646927	-6.083479	1.984453
Н	3.646927	6.083479	1.984453
С	3.722170	-5.407772	1.129407
С	3.722170	5.407772	1.129407
С	2.925351	-4.645308	-1.030518
С	2.925351	4.645308	-1.030518
Н	2.234924	-4.731537	-1.872802
Н	2.234924	4.731537	-1.872802
С	4.069503	-0.688135	0.114180

С	4.069503	0.688135	0.114180
Η	5.417917	-4.327169	1.943165
Η	5.417917	4.327169	1.943165
С	4.717910	-4.421836	1.109777
С	4.717910	4.421836	1.109777
С	3.920522	-3.658534	-1.047367
С	3.920522	3.658534	-1.047367
Η	4.003367	-2.972578	-1.892724
Η	4.003367	2.972578	-1.892724
С	4.829672	-3.534150	0.021180
С	4.829672	3.534150	0.021180
С	5.432601	1.136302	0.017972
С	5.432601	-1.136302	0.017972
С	5.887630	-2.471290	0.006142
С	5.887630	2.471290	0.006142
Ν	6.216737	0.000000	-0.035577
Η	6.990332	-5.130155	-0.207176
Η	6.990332	5.130155	-0.207176
Η	7.234471	0.000000	-0.048785
С	7.245578	-2.875124	-0.015566
С	7.245578	2.875124	-0.015566
С	7.657112	-4.276954	-0.123939
С	7.657112	4.276954	-0.123939
Ν	8.339417	-2.041025	0.030416
Ν	8.339417	2.041025	0.030416
С	9.018772	-4.277214	-0.133434
С	9.018772	4.277214	-0.133434
C	9.432382	-2.875554	-0.027725
C	9.432382	2.875554	-0.027725
Н	9.444133	0.000000	-0.071925
H	9.683937	-5.131056	-0.226769
H	9.683937	5.131056	-0.226769
N	10.462042	0.000000	-0.060579
C	10.791091	-2.472192	-0.016819
C	10./91091	2.4/2192	-0.016819
C	11.246159	-1.136555	-0.005931
C	11.246159	1.136555	-0.005931
C	11.848226	-3.535428	-0.012034
	11.848220	3.333428	-0.012034
H	11.246395	-4.362053	1.890813
н С	11.240393	4.302033	1.890813
C	11.952706	-4.441989	1.061912
C	11.932700	4.441989	1.001912
C	12.764706	-3.042393	-1.076429
с ц	12./04/00	J.042373 2 012012	-1.0/0429
п Ц	12.0003/4	-2.743743	-1.712203
Γ	12.0003/4	2.743743 -0.688132	-1.912203
C	12.009272	-0.000133	0.09100/
U	12.009212	0.000133	0.07100/

Η	13.017334	-6.119126	1.915801
Η	13.017334	6.119126	1.915801
С	12.947725	-5.428541	1.071674
С	12.947725	5.428541	1.071674
С	13.759877	-4.629054	-1.069030
С	13.759877	4.629054	-1.069030
Н	14.458660	-4.700141	-1.906099
Н	14.458660	4.700141	-1.906099
Н	13.467074	-1.347669	0.173646
Н	13.467074	1.347669	0.173646
С	13.855608	-5.525492	0.006242
С	13.855608	5.525492	0.006242
Н	14.632016	-6.294225	0.013682
Н	14.632016	6.294225	0.013682
S2- S	Sandwich 2H-	TPP Dimer	
E= -	1045.0716554	1 eV	
С	-3.038613	2.742607	2.470483
С	-3.454285	2.946468	1.136601
С	-1.755541	2.275154	2.858180
C	-4.680716	3.547237	0.688350
C	-4.680716	3.547237	-0.688350
Ċ	-3.454285	2.946468	-1.136601
Ċ	-1.408678	1.930655	4.238644
Ċ	-0.078398	1.640462	4.236598
C	0.376962	1.793599	2.852954
Ň	-2.744497	2.610311	0.000000
Н	-1.788008	2.258651	0.000000
Н	-5.444064	3.949786	1.345137
Н	-5.444064	3.949786	-1.345137
N	-0.669077	2.131529	2.025456
Н	-2 102342	1 874004	5 072249
Н	0.534698	1 304006	5 066791
C	-3 038613	2 742607	-2.470483
C	-1 755541	2 275154	-2.858180
Č	-1 408678	1 930655	-4 238644
Č	-0 078398	1 640462	-4 236598
Č	0 376962	1 793599	-2 852954
Ň	-0.669077	2 131529	-2 025456
Н	-2.102342	1 874004	-5 072249
Н	0 534698	1 304006	-5 066791
C	1 736363	1.648687	2 470138
C	3 564553	1 554078	0 688244
C	3 564553	1 554078	-0.688244
č	2 199121	1 587706	-1 137443
Ň	1 413468	1 589976	0 000000
H	4 427035	1 556618	-1 345752
C	1 736363	1 648687	-2.470138
Č	2.199121	1.587706	1.137443
-	//.		

Η	4.427035	1.556618	1.345752
Η	0.404131	1.729419	0.000000
С	2.763464	1.650481	3.559518
С	2.800249	2.722829	4.477910
С	3.707615	0.614939	3.702444
С	3.747391	2.755301	5.509187
С	4.652626	0.643506	4.736032
С	4.677560	1.713133	5.643185
Η	2.076016	3.533050	4.371231
Η	3.675845	-0.224072	3.009162
Η	3.760503	3.597021	6.205896
Η	5.355845	-0.183454	4.843673
Η	5.413832	1.731833	6.450847
С	2.763464	1.650481	-3.559518
С	2.800249	2.722829	-4.477910
С	3.707615	0.614939	-3.702444
С	3.747391	2.755301	-5.509187
С	4.652626	0.643506	-4.736032
С	4.677560	1.713133	-5.643185
Η	2.076016	3.533050	-4.371231
Η	3.675845	-0.224072	-3.009162
Η	3.760503	3.597021	-6.205896
Η	5.355845	-0.183454	-4.843673
Η	5.413832	1.731833	-6.450847
С	-4.023894	3.090569	3.541163
С	-3.677966	3.997679	4.565595
С	-5.322581	2.541491	3.549994
С	-4.595642	4.335700	5.567857
С	-6.243284	2.879216	4.549526
С	-5.883016	3.776958	5.565822
Н	-2.681423	4.443954	4.560140
Н	-5.600958	1.834475	2.767149
Н	-4.306953	5.045377	6.346558
Н	-7.240827	2.433855	4.539081
H	-6.599639	4.042275	6.346667
C	-4.023894	3.090569	-3.541163
C	-3.677966	3.997679	-4.565595
C	-5.322581	2.541491	-3.549994
C	-4.595642	4.335/00	-5.56/85/
C	-6.243284	2.8/9216	-4.549526
C	-5.883016	3.//6958	-5.565822
H	-2.681423	4.443954	-4.560140
H	-5.600958	1.8344/5	-2./6/149
H	-4.306953	5.045377	-0.340558
П П	-/.24082/	2.433833	-4.339081
н С	-0.399039	4.0422/3	-0.34000/
	-1./30303	-1.04808/	∠.4/0138 1 127442
C	-2.199121	-1.38//00	1.13/443
U	-0.3/0902	-1./93399	2.032934

С	-3.564553	-1.554078	0.688244
С	-3.564553	-1.554078	-0.688244
С	-2.199121	-1.587706	-1.137443
С	0.078398	-1.640462	4.236598
С	1.408678	-1.930655	4.238644
С	1.755541	-2.275154	2.858180
Ν	-1.413468	-1.589976	0.000000
Н	-0.404131	-1.729419	0.000000
Н	-4.427035	-1.556618	1.345752
Н	-4.427035	-1.556618	-1.345752
Ν	0.669077	-2.131529	2.025456
Η	-0.534698	-1.304006	5.066791
Η	2.102342	-1.874004	5.072249
С	-1.736363	-1.648687	-2.470138
С	-0.376962	-1.793599	-2.852954
С	0.078398	-1.640462	-4.236598
С	1.408678	-1.930655	-4.238644
С	1.755541	-2.275154	-2.858180
Ν	0.669077	-2.131529	-2.025456
Η	-0.534698	-1.304006	-5.066791
Η	2.102342	-1.874004	-5.072249
С	3.038613	-2.742607	2.470483
С	4.680716	-3.547237	0.688350
С	4.680716	-3.547237	-0.688350
С	3.454285	-2.946468	-1.136601
Ν	2.744497	-2.610311	0.000000
Η	5.444064	-3.949786	-1.345137
С	3.038613	-2.742607	-2.470483
С	3.454285	-2.946468	1.136601
Η	5.444064	-3.949786	1.345137
Н	1.788008	-2.258651	0.000000
С	4.023894	-3.090569	3.541163
С	5.322581	-2.541491	3.549994
С	3.677966	-3.997679	4.565595
C	6.243284	-2.879216	4.549526
C	4.595642	-4.335700	5.567857
C	5.883016	-3.776958	5.565822
H	5.600958	-1.834475	2.767149
H	2.681423	-4.443954	4.560140
H	7.240827	-2.433855	4.539081
H	4.306953	-5.045377	6.346558
H	6.599639	-4.042275	6.346667
C	4.023894	-3.090569	-3.541163
C	5.522581	-2.541491	-3.549994
C	3.0//900	-3.99/0/9	-4.303393
C	0.243284	-2.8/9210	-4.349320
	4.373042	-4.333/00	-3.30/83/
U U	J.00JU10	-3.//0938	-3.303822
п	5.000938	-1.0344/3	-2./0/149

Η	2.681423	-4.443954	-4.560140
Η	7.240827	-2.433855	-4.539081
Η	4.306953	-5.045377	-6.346558
Η	6.599639	-4.042275	-6.346667
С	-2.763464	-1.650481	3.559518
С	-3.707615	-0.614939	3.702444
С	-2.800249	-2.722829	4.477910
С	-4.652626	-0.643506	4.736032
С	-3.747391	-2.755301	5.509187
С	-4.677560	-1.713133	5.643185
Н	-3.675845	0.224072	3.009162
Н	-2.076016	-3.533050	4.371231
Н	-5.355845	0.183454	4.843673
Η	-3.760503	-3.597021	6.205896
Н	-5.413832	-1.731833	6.450847
С	-2.763464	-1.650481	-3.559518
С	-3.707615	-0.614939	-3.702444
С	-2.800249	-2.722829	-4.477910
С	-4.652626	-0.643506	-4.736032
С	-3.747391	-2.755301	-5.509187
С	-4.677560	-1.713133	-5.643185
Н	-3.675845	0.224072	-3.009162
Н	-2.076016	-3.533050	-4.371231
Н	-5.355845	0.183454	-4.843673
Η	-3.760503	-3.597021	-6.205896
Η	-5.413832	-1.731833	-6.450847

<u>S3- Ag(111)_64-Benzene</u>

E=-1	83.74769746	eV	Symmetry: C _{3v}
Ag	-6.672409	2.889236	-1.293224
Ag	-6.672409	-2.889236	-1.293224
Ag	5.838356	-4.333857	-1.293224
Ag	5.838356	4.333857	-1.293224
Ag	0.834052	-7.223094	-1.293224
Ag	0.834052	7.223094	-1.293224
Ag	-6.672411	0.000000	-1.293222
Ag	3.336206	-5.778478	-1.293222
Ag	3.336206	5.778478	-1.293222
Ag	-4.170257	1.444622	-1.293220
Ag	-4.170257	-1.444622	-1.293220
Ag	3.336207	-2.889238	-1.293220
Ag	3.336207	2.889238	-1.293220
Ag	0.834049	-4.333859	-1.293220
Ag	0.834049	4.333859	-1.293220
Ag	-1.668100	0.000000	-1.293216
Ag	0.834050	-1.444617	-1.293216

Ag	0.834050	1.444617	-1.293216
Ag	-1.668102	-2.889237	-1.293214
Ag	-1.668102	2.889237	-1.293214
Ag	3.336203	0.000000	-1.293214
Ag	-1.668100	-5.778479	-1.293212
Ag	-1.668100	5.778479	-1.293212
Ag	-4.170260	-4.333857	-1.293212
Ag	-4.170260	4.333857	-1.293212
Ag	5.838360	1.444622	-1.293212
Ag	5.838360	-1.444622	-1.293212
Ag	-7.787319	4.597414	0.982917
Ag	-7.787319	-4.597414	0.982917
Ag	7.875137	-4.445310	0.982917
Ag	7.875137	4.445310	0.982917
Ag	-0.087817	-9.042723	0.982917
Ag	-0.087817	9.042723	0.982917
Ag	-7.954438	1.518828	1.202254
Ag	-7.954438	-1.518828	1.202254
Ag	5.292563	-6.129331	1.202254
Ag	5.292563	6.129331	1.202254
Ag	2.661875	-7.648160	1.202254
Ag	2.661875	7.648160	1.202254
Ag	-5.248020	3.062867	1.676706
Ag	-5.248020	-3.062867	1.676706
Ag	5.276530	-3.013485	1.676706
Ag	5.276530	3.013485	1.676706
Ag	-0.028511	-6.076352	1.676706
Ag	-0.028511	6.076352	1.676706
Ag	-5.295288	0.000000	1.665041
Ag	2.647644	-4.585854	1.665041
Ag	2.647644	4.585854	1.665041
Ag	-2.699858	1.561404	1.468911
Ag	-2.699858	-1.561404	1.468911
Ag	2.702144	-1.557444	1.468911
Ag	2.702144	1.557444	1.468911
Ag	-0.002286	-3.118847	1.468911
Ag	-0.002286	3.118847	1.468911
Ag	-2.651321	-4.592222	1.669296
Ag	-2.651321	4.592222	1.669296
Ag	5.302642	0.000000	1.669296
Ag	0.000000	0.000000	1.312384
Ag	-2.721867	-7.678530	0.691063
Ag	-2.721867	7.678530	0.691063
Ag	-5.288869	-6.196471	0.691063
Ag	-5.288869	6.196471	0.691063
Ag	8.010735	1.482059	0.691063
Ag	8.010735	-1.482059	0.691063
C	-1.217347	0.702723	4.528152
С	-1.217347	-0.702723	4.528152

С	0.000098	-1.405615	4.528152	Ag	11.676697
С	1.217250	-0.702892	4.528152	Ag	-8.340494
С	1.217250	0.702892	4.528152	Ag	11.676697
С	0.000098	1.405615	4.528152	Ag	-3.336206
Н	-2.163502	1.249690	4.528808	Ag	-3.336206
Н	-2.163502	-1.249690	4.528808	Ag	6.672412
Н	-0.000512	-2.498492	4.528808	Ag	-5.838351
Н	2.164014	-1.248802	4.528808	Ag	-5.838351
Н	2.164014	1.248802	4.528808	Ag	11.676702
Н	-0.000512	2.498492	4.528808	Ag	-3.336201
				Ag	1.668100
S4- A	Ag(111) 166-	Benzene		Ag	1.668100
E=-3	72.89129933	eV Symmetr	y: C_{3v}	Ag	-5.838359
Ag	-0.834052	1.444620	-1.641278	Ag	4.170256
Ag	-0.834052	-1.444620	-1.641278	Ag	-5.838359
Ag	1.668103	0.000000	-1.641278	Ag	1.668103
Ag	-0.834055	10.112322	-1.641277	Ag	4.170256
Ag	-8.340500	5.778474	-1.641277	Ag	1.668103
Ag	-0.834055	-10.112322	-1.641277	Ag	-8.340507
Ag	9.174555	-4.333848	-1.641277	Ag	6.672408
Ag	-8.340500	-5.778474	-1.641277	Ag	-8.340507
Ag	9.174555	4.333848	-1.641277	Ag	1.668099
Ag	-0.834054	4.333856	-1.641274	Ag	6.672408
Ag	-3.336202	2.889240	-1.641274	Ag	1.668099
Ag	-0.834054	-4.333856	-1.641274	Ag	-8.340507
Ag	4.170256	-1.444616	-1.641274	Ag	4.170254
Ag	-3.336202	-2.889240	-1.641274	Ag	4.170254
Ag	4.170256	1.444616	-1.641274	Ag	-10.842655
Ag	-0.834054	13.001559	-1.641274	Ag	9.174550
Ag	-10.842654	7.223092	-1.641274	Ag	-10.842655
Ag	-0.834054	-13.001559	-1.641274	Ag	1.668105
Ag	11.676708	-5.778467	-1.641274	Ag	9.174550
Ag	-10.842654	-7.223092	-1.641274	Ag	1.668105
Ag	11.676708	5.778467	-1.641274	Ag	-10.842656
Ag	-3.336213	8.667703	-1.641273	Ag	6.672406
Ag	-5.838345	7.223097	-1.641273	Ag	-10.842656
Ag	-3.336213	-8.667703	-1.641273	Ag	4.170250
Ag	9.174558	-1.444606	-1.641273	Ag	6.672406
Ag	-5.838345	-7.223097	-1.641273	Ag	4.170250
Ag	9.174558	1.444606	-1.641273	Ag	-13.132014
Ag	-0.834054	7.223084	-1.641271	Ag	10.608116
Ag	-5.838348	4.333854	-1.641271	Ag	-13.132014
Ag	-0.834054	-7.223084	-1.641271	Ag	2.523898
Ag	6.672402	-2.889230	-1.641271	Ag	10.608116
Ag	-5.838348	-4.333854	-1.641271	Ag	2.523898
Ag	6.672402	2.889230	-1.641271	Ag	-13.079773
Ag	-3.336203	11.556930	-1.641269	Ag	7.919671
Ag	-8.340494	8.667702	-1.641269	Ag	-13.079772
Ag	-3.336203	-11.556930	-1.641269	Ag	5.160101
\mathcal{O}				8	

Ag	11.676697	-2.889229	-1.641269
Ag	-8.340494	-8.667702	-1.641269
Ag	11.676697	2.889229	-1.641269
Ag	-3.336206	5.778479	-1.641266
Ag	-3.336206	-5.778479	-1.641266
Ag	6.672412	0.000000	-1.641266
Ag	-5.838351	10.112321	-1.641265
Ag	-5.838351	-10.112321	-1.641265
Ag	11.676702	0.000000	-1.641265
Ag	-3.336201	0.000000	-1.641263
Ag	1.668100	2.889235	-1.641263
Ag	1.668100	-2.889235	-1.641263
Ag	-5.838359	-1.444619	-1.641259
Ag	4.170256	4.333858	-1.641259
Ag	-5.838359	1.444619	-1.641259
Ag	1.668103	5.778477	-1.641259
Ag	4.170256	-4.333858	-1.641259
Ag	1.668103	-5.778477	-1.641259
Ag	-8.340507	-2.889239	-1.641254
Ag	6.672408	5.778472	-1.641254
Ag	-8.340507	2.889239	-1.641254
Ag	1.668099	8.667711	-1.641254
Ag	6.672408	-5.778472	-1.641254
Ag	1.668099	-8.667711	-1.641254
Ag	-8.340507	0.000000	-1.641251
Ag	4.170254	7.223091	-1.641251
Ag	4.170254	-7.223091	-1.641251
Ag	-10.842655	-4.333848	-1.641250
Ag	9.174550	7.223091	-1.641250
Ag	-10.842655	4.333848	-1.641250
Ag	1.668105	11.556939	-1.641250
Ag	9.174550	-7.223091	-1.641250
Ag	1.668105	-11.556939	-1.641250
Ag	-10.842656	-1.444620	-1.641246
Ag	6.672406	8.667705	-1.641246
Ag	-10.842656	1.444620	-1.641246
Ag	4.170250	10.112325	-1.641246
Ag	6.672406	-8.667705	-1.641246
Ag	4.170250	-10.112325	-1.641246
Ag	-13.132014	-4.667425	0.240009
Ag	10.608116	9.038945	0.240009
Ag	-13.132014	4.667425	0.240009
Ag	2.523898	13.706371	0.240009
Ag	10.608116	-9.038945	0.240009
Ag	2.523898	-13.706371	0.240009
Ag	-13.079773	-1.593239	0.297832
Ag	7.919671	10.530796	0.297832
Ag	-13.079773	1.593239	0.297832
Ag	5.160101	12.124035	0.297832

Ag	7.919671	-10.530796	0.297832	Ag	-2.650993	-4.591655	1.212813
Ag	5.160101	-12.124035	0.297832	Ag	5.301987	0.000000	1.212813
Ag	-0.094487	15.172654	0.487307	Ag	-0.044086	9.174546	1.224618
Ag	-13.092660	7.668155	0.487307	Ag	-7.923347	4.625453	1.224618
Ag	-0.094487	-15.172654	0.487307	Ag	-0.044086	-9.174546	1.224618
Ag	13.187147	-7.504499	0.487307	Ag	7.967433	-4.549093	1.224618
Ag	-13.092660	-7.668155	0.487307	Ag	-7.923347	-4.625453	1.224618
Ag	13.187147	7.504499	0.487307	Ag	7.967433	4.549093	1.224618
Ag	-5.417787	12.383932	0.676159	Ag	-7.889211	-1.551838	1.235125
Aσ	-8 015906	10 883907	0.676159	Ag	5 288537	6 056339	1 235125
Aσ	-5 417787	-12 383932	0.676159	Ασ	-7 889211	1 551838	1 235125
Aσ	13 433693	-1 500025	0.676159	Ασ	2 600675	7 608176	1 235125
Δσ	-8 015906	-10 883907	0.676159	Δσ	5 288537	-6.056339	1.235125
Δσ	13 433693	1 500025	0.676159	Δσ	2 600675	-7 608176	1.235125
Δσ	-2 810427	13 837082	0.730460	Δσ	-10508123	-3 094728	1 242239
Λσ	-10578051	0 352442	0.730460	Λg	7 03/175	7 552037	1 2/2235
Λg	2 810427	13 837082	0.730460	Ag	10 508123	3 00/728	1.242237
Ag	-2.010427	-13.837082	0.730400	Ag	-10.308123	10 647666	1.242239
Ag	13.3004/0	-4.464040	0.730400	Ag	2.373940	7 552027	1.242239
Ag	-10.378031	-9.552442	0.730400	Ag	7.934173	-1.332931	1.242239
Ag	13.3884/8	4.484040	0./30400	Ag	2.5/3948	-10.04/000	1.242239
Ag	0.000000	0.000000	1.023308	Ag	-2.092203	10./3008/	1.239009
Ag	-0.0058/1	3.05/964	1.132958	Ag	-7.952111	/.099913	1.239069
Ag	-2.645339	1.534066	1.132958	Ag	-2.692265	-10./3668/	1.239069
Ag	-0.0058/1	-3.05/964	1.132958	Ag	10.644376	-3.036//4	1.239069
Ag	2.651209	-1.523898	1.132958	Ag	-/.952111	-/.699913	1.239069
Ag	-2.645339	-1.534066	1.132958	Ag	10.644376	3.036774	1.239069
Ag	2.651209	1.523898	1.132958	Ag	-0.070019	12.182003	1.297401
Ag	-5.257672	0.000000	1.198300	Ag	-10.514915	6.151640	1.297401
Ag	2.628836	4.553278	1.198300	Ag	-0.07/0019	-12.182003	1.297401
Ag	2.628836	-4.553278	1.198300	Ag	10.584933	-6.030363	1.297401
Ag	-2.672926	7.669849	1.194878	Ag	-10.514915	-6.151640	1.297401
Ag	-5.305821	6.149747	1.194878	Ag	10.584933	6.03036	53 1.297401
Ag	-2.672926	-7.669849	1.194878	С	0.000033	1.404795	4.281678
Ag	7.978747	-1.520102	1.194878	С	-1.216604	0.702369	4.281678
Ag	-5.305821	-6.149747	1.194878	С	-1.216604	-0.702369	4.281678
Ag	7.978747	1.520102	1.194878	С	0.000033	-1.404795	4.281678
Ag	-0.036086	6.128158	1.203431	С	1.216572	-0.702426	4.281678
Ag	-5.289098	3.095331	1.203431	С	1.216572	0.702426	4.281678
Ag	-0.036086	-6.128158	1.203431	Н	0.000240	2.497448	4.272639
Ag	5.325184	-3.032828	1.203431	Н	-2.162974	1.248516	4.272639
Ag	-5.289098	-3.095331	1.203431	Н	-2.162974	-1.248516	4.272639
Ag	5.325184	3.032828	1.203431	Н	0.000240	-2.497448	4.272639
Ag	-10.482963	0.000000	1.198702	Н	2.162734	-1.248932	4.272639
Ag	5.241482	9.078512	1.198702	Н	2.162734	1.248932	4.272639
Ag	5.241482	-9.078512	1.198702				
Ag	-5.312810	9.202056	1.192267	S5- (Cu(111) 64-B	enzene	
Ag	-5.312810	-9.202056	1.192267	$\overline{E} = -2$	232.05207362	eVSvmmetr	$v: C_{3v}$
Ag	10.625619	0.000000	1.192267	CU	-5.158257	-3.828868	2.032641
Ag	-2.650993	4.591655	1.212813	CU	-5.158257	3.828868	2.032641
0						2.020000	

CU	-0.736769	6.381616	2.032641
CU	-0.736769	-6.381616	2.032641
CU	5.895026	-2.552748	2.032641
CU	5.895026	2.552748	2.032641
CU	-0.736889	-1.276329	2.032520
CU	-0.736889	1.276329	2.032520
CU	1.473778	0.000000	2.032520
CU	-2.947539	5.105288	2.032512
CU	-2.947539	-5.105288	2.032512
CU	5 895078	0 000000	2 032512
CU	-2 947628	0.000000	2 032371
CU	1 473814	2 552721	2 032371
CU	1 473814	-2 552721	2.032371
CU	-2 947628	2 552669	2.032312
CU	-2.947628	-2 552669	2.032312
CU	-0 736862	3 829055	2.032312
CU	3 684490	1 276386	2.032312
CU	3 684490	-1 276386	2.032312
CU	-0 736862	-3 829055	2.032312
	-5.158207	-1.276329	2.032312
	-5.158207	1 276329	2.032302
	-3.138207	5 105303	2.032302
	2 691127	2 9 2 9 0 7 4	2.032302
	5.064457	5.020974	2.032302
	1.4/3//0	-3.103303	2.032302
	5.064457	-5.6269/4	2.032302
	4.438931	-3.100010	0.025258
	2.249234	-0.424252	0.025258
	-0.088103	-1.204222	0.025258
	-0.088103	1.204222	0.025258
	2.249234	6.424232	0.025258
	4.438931	5.160010	0.025258
CU	6.603256	-3.830932	-0.0/3919
CU	0.01605/	-7.634053	-0.0/3919
CU	-6.619312	-3.803121	-0.0/3919
CU	-6.619312	3.803121	-0.0/3919
CU	0.01605/	7.634053	-0.0/3919
CU	6.603256	3.830932	-0.073919
CU	6.639379	1.270970	-0.116967
CU	6.639379	-1.270970	-0.116967
CU	-2.218997	-6.385356	-0.116967
CU	-4.420382	-5.114386	-0.116967
CU	-4.420382	5.114386	-0.116967
CU	-2.218997	6.385356	-0.116967
CU	0.000000	0.000000	-0.079687
CU	2.227987	-1.291122	-0.179093
CU	0.004151	-2.575054	-0.179093
CU	-2.232138	-1.283932	-0.179093
CU	-2.232138	1.283932	-0.179093
CU	0.004151	2.575054	-0.179093

CU	2.227987	1.291122	-0.179093
CU	2.221518	-3.847783	-0.224244
CU	-4.443037	0.000000	-0.224244
CU	2.221518	3.847783	-0.224244
CU	0.015427	-5.110435	-0.228404
CU	-4.433480	-2.541858	-0.228404
CU	-4.433480	2.541858	-0.228404
CU	0.015427	5.110435	-0.228404
ĊŪ	4.418053	2.568577	-0.228404
CU	4 418053	-2 568577	-0 228404
CU	-2 210259	-3 828281	-0 251616
CU	-2 210259	3 828281	-0 251616
CU	4 420518	0.000000	-0.251616
C	-1 219381	0 704528	-3 012385
C	-1 219381	-0 704528	-3 012385
C	-0.000449	-1 408279	-3 012385
C	1 219830	-0.703750	-3 012385
C	1 219830	0.703750	-3 012385
C	-0.000449	1 408279	-3.012385
н	-2.166704	1.400277	-2 080851
и Ц	2.166704	1.250391	2.989851
и Ц	-2.100704	2 501616	2.989851
и П	0.000482	1 251226	2.989851
П П	2.100222	1 251226	-2.969651
п ц	2.100222	2 501616	-2.969631
п	0.000482	2.301010	-2.969631
S6 C	u(111) TDD		
$\frac{50-C}{E=0}$	u(111)-1PP 57 51610007	W Summetr	
E9	2/.3101990/ 9 105765	1 1 4 2 5 7 5	$y_{\rm c} C_{\rm s}$
Cu	8.105765	-1.142575	-0.381040
Cu	8.105/65	-1.142575	6.381640
Cu	1.4/3/80	-1.142575	-10.210618
Cu	1.4/3/80	-1.142575	10.210618
Cu	-9.579545	-1.142575	3.828978
Cu	-9.579545	-1.142575	-3.828978
Cu	5.895106	-1.142573	-7.657965
Cu	5.895106	-1.142573	7.657965
Cu	3.684439	-1.142573	-8.934294
Cu	3.684439	-1.142573	8.934294
Cu	-9.579545	-1.142573	1.276329
Cu	-9.579545	-1.142573	-1.276329
Cu	5.895105	-1.142571	-5.105304
Cu	5.895105	-1.142571	5.105304
Cu	1.473770	-1.142571	-7.657963
Cu	1.473770	-1.142571	7.657963
Cu	-7.368876	-1.142571	2.552659
Cu	-7.368876	-1.142571	-2.552659
Cu	10 316433	3 -1.142569	5.105310

10.316433 -1.142569 -5.105310

3.684438 -1.142569 -6.381633

Cu

Cu

Cu	3.684438	-1.142569	6.381633
Cu	-0.736888	-1.142569	-11.486948
Cu	-0.736888	-1.142569	11.486948
Cu	-7.368876	-1.142569	0.000000
Cu	-9.579545	-1.142569	-6.381638
Cu	-9.579545	-1.142569	6.381638
Cu	3.684442	-1.142567	-3.828982
Cu	3.684442	-1.142567	3.828982
Cu	1.473774	-1.142567	-5.105311
Cu	1.473774	-1.142567	5.105311
Cu	-5.158216	-1.142567	1.276329
Cu	-5.158216	-1.142567	-1.276329
Cu	8.105764	-1.142566	3.828979
Cu	8.105764	-1.142566	-3.828979
Cu	-0.736889	-1.142566	-8.934287
Cu	-0.736889	-1.142566	8.934287
Cu	-7.368875	-1.142566	-5.105308
Cu	-7.368875	-1.142566	5.105308
Cu	10.316432	-1.142565	2.552650
Cu	10.316432	-1.142565	-2.552650
Cu	-2.947556	-1.142565	-10.210617
Cu	-2.947556	-1.142565	10.210617
Cu	-7.368876	-1.142565	-7.657967
Cu	-7.368876	-1.142565	7.657967
Cu	5.895101	-1.142564	-2.552657
Cu	5.895101	-1.142564	2.552657
Cu	-0.736884	-1.142564	-6.381636
Cu	-0.736884	-1.142564	6.381636
Cu	-5.158216	-1.142564	-3.828978
Cu	-5.158216	-1.142564	3.828978
Cu	8.105768	-1.142563	-1.276328
Cu	8.105768	-1.142563	1.276328
Cu	1.473774	-1.142563	-2.552651
Cu	1.473774	-1.142563	2.552651
Cu	-2.947547	-1.142563	0.000000
Cu	-2.947552	-1.142563	-7.657965
Cu	-2.947552	-1.142563	7.657965
Cu	-5.158216	-1.142563	-6.381637
Cu	-5.158216	-1.142563	6.381637
Cu	3.684441	-1.142562	-1.276321
Cu	3.684441	-1.142562	1.276321
Cu	-0.736894	-1.142562	-3.828980
Cu	-0.736894	-1.142562	3.828980
Cu	-2.947547	-1.142562	-2.552659
Cu	-2.94/547	-1.142562	2.552659
Cu	10.316427	-1.142561	0.000000
Cu	-5.158214	-1.142561	-8.934288
Cu	-5.158214	-1.142561	8.934288
Cu	5.895100	-1.142560	0.000000

Cu	1.473778	-1.142560	0.000000
Cu	-0.736889	-1.142560	-1.276329
Cu	-0.736889	-1.142560	1.276329
Cu	-2.947550	-1.142560	-5.105306
Cu	-2.947550	-1.142560	5.105306
Cu	8.860490	0.957321	-7.663791
Cu	8.860490	0.957321	7.663791
Cu	2.206793	0.957321	-11.505305
Cu	2.206793	0.957321	11.505305
Cu	-11.067282	0.957321	3.841514
Cu	-11.067282	0.957321	-3.841514
Cu	6.643155	0.943229	-8.937935
Cu	6.643155	0.943229	8.937935
Cu	4.418901	0.943229	-10.222109
Cu	4.418901	0.943229	10.222109
Cu	-11 062056	0 943229	1 284174
Cu	-11 062056	0 943229	-1 284174
Cu	6 643226	1 063727	-6 378226
Cu	6 643226	1 063727	6 378226
Cu	2 202092	1 063727	-8 942316
Cu	2 202092	1 063727	8 942316
Cu	-8 845319	1 063727	2 564090
Cu	-8 845319	1.063727	-2 564090
Cu	11.063551	0.959830	6 377028
Cu	11.063551	0.959830	-6 377028
Cu	4 422871	1 063741	-7 660638
Cu	4 422871	1.063741	7 660638
Cu	-0.009107	0.959830	-12 769830
Cu	-0.009107	0.959830	12.769830
Cu	-8 845743	1 063741	0.000000
Cu	-11 054444	0.959830	-6 392802
Cu	-11 054444	0.959830	6 392802
Cu	4 424540	1 100325	-5 101812
Cu	4 424540	1 100325	5 101812
Cu	2 206028	1 100325	-6 382670
Cu	2 206028	1 100325	6 382670
Cu	-6 630569	1 100325	1 280858
Cu	-6 630569	1 100325	-1 280858
Cu	8 866523	1 085428	5 105915
Cu	8 866523	1 085428	-5 105915
Cu	-0.011409	1 085428	-10 231592
Cu	-0.011409	1 085428	10 231592
Cu	-8 855114	1 085428	-5 125676
Cu	-8 855114	1 085428	5 125676
Cu	11 105078	0 976411	3 825237
Cu	11,105078	0.976411	-3.825237
Cu	-2 239787	0 976411	-11 529898
Cu	-2.239787	0.976411	11.529898
Cu	-8.865291	0.976411	-7.704661

Cu	-8.865291	0.976411	7.704661
Cu	6.648332	1.090726	3.830177
Cu	6.648332	1.090726	-3.830177
Cu	-0.007135	1.090726	-7.672713
Cu	-0.007135	1.090726	7.672713
Cu	-6.641197	1.090726	-3.842536
Cu	-6 641197	1 090726	3 842536
Cu	2 209076	1 069521	-3 826233
Cu	2 209076	1 069521	3 826233
Cu	-4 418153	1 069521	0.000000
Cu	8 862277	1 105460	2 561247
Cu	8 862277	1 105460	-2.561247
Cu	<i>4 4 4 4 4 4 4 4 4 4</i>	1.098855	-2 560546
Cu	<i>A A A</i> 1104	1.098855	2 560546
Cu	_0 003000	1.098855	-5 126460
Cu	0.003000	1.098855	5 126460
Cu	-0.003099	1.098855	9.055591
Cu	-2.213034	1.105460	-0.933301
Cu	-2.213034	1.103400	0.955501
Cu	-4.430093	1.090055	-2.303914
Cu	-4.438095	1.098855	2.565914
Cu	-6.649244	1.105460	-0.394334
Cu	-0.049244	1.105460	0.394334
Cu	11.0945/8	0.983895	1.281284
Cu	11.0945/8	0.983895	-1.281284
Cu	-4.43/664	0.983895	-10.248829
Cu	-4.43/664	0.983895	10.248829
Cu	-6.656914	0.983895	-8.967544
Cu	-6.656914	0.983895	8.967544
Cu	6.644651	1.081595	-1.271261
Cu	6.644651	1.081595	1.271261
Cu	-2.221381	1.081595	-6.390067
Cu	-2.221381	1.081595	6.390067
Cu	-4.423270	1.081595	-5.118806
Cu	-4.423270	1.081595	5.118806
Cu	8.870651	1.101197	0.000000
Cu	2.218557	1.061629	-1.275808
Cu	2.218557	1.061629	1.275808
Cu	-0.004397	1.061629	-2.559231
Cu	-0.004397	1.061629	2.559231
Cu	-2.214160	1.061629	-1.283423
Cu	-2.214160	1.061629	1.283423
Cu	-4.435326	1.101197	-7.682209
Cu	-4.435326	1.101197	7.682209
Cu	4.430122	1.090351	0.000000
Cu	-2.215061	1.090351	-3.836598
Cu	-2.215061	1.090351	3.836598
Cu	0.000000	1.067131	0.000000
Н	-2.033407	3.439537 -	5.049510
Н	-2.033407	3.439537	5.049510

Η	2.413003	3.428917	-5.054629
Η	2.413003	3.428917	5.054629
Η	-3.680270	3.527812	-6.874598
Η	-3.680270	3.527812	6.874598
Η	4.080223	3.547983	-6.859862
Η	4.080223	3.547983	6.859862
Η	5.263510	3.498115	1.334079
Η	5.263510	3.498115	-1.334079
Н	-4.937082	3.505484	-1.330024
Η	-4.937082	3.505484	1.330024
С	4.410758	3.693234	-0.694118
С	4.410758	3.693234	0.694118
С	-4.082799	3.707161	-0.693617
С	-4.082799	3.707161	0.693617
С	-3.018739	3.870888	-4.853508
С	-3.018739	3.870888	4.853508
С	3.390045	3.872533	-4.847142
C	3.390045	3.872533	4.847142
Č	-3.960609	3.914886	-5.891039
C	-3 960609	3 914886	5 891039
Č	4.343340	3.934985	-5.872117
Č	4 343340	3 934985	5 872117
Č	3 077207	3 996465	1 146630
Č	3 077207	3 996465	-1 146630
Č	-2.748589	4.004284	-1.147257
Č	-2.748589	4.004284	1.147257
Ň	0 168513	4 113168	-2 054745
N	0 168513	4 113168	2 054745
N	2.305394	4.111571	0.000000
N	-1 976669	4 117776	0 000000
C	2 635935	4 264059	-2 471391
Č	2 635935	4 264059	2 471391
Č	-2 300769	4 271351	-2 470363
Č	-2 300769	4 271351	2 470363
Ĥ	1.293361	4.231886	0.000000
Н	-0.966019	4 246815	0.000000
C	1 267815	4 487450	-2 807675
Č	-0.931175	4.496396	-2.802688
Č	1.267815	4.487450	2.807675
Ĉ	-0.931175	4 496396	2 802688
Č	-3 317766	4 364024	-3 558318
Č	-3.317766	4.364024	3.558318
Č	3.663740	4.370267	-3.547697
Č	3 663740	4 370267	3 547697
Č	-5.252599	4.409375	-5.657177
C	-5.252599	4.409375	5.657177
Č	5.622124	4.455029	-5.621083
Č	5.622124	4.455029	5.621083
Ĥ	-6.000074	4.395734	-6.453389

Н	-6 000074	4 395734	6 453389
Н	6 378724	4 460467	-6 408469
Н	6 378724	4 460467	6 408469
С	0.850339	5.187219	-4.018859
Ċ	-0.512709	5.196463	-4.013708
Ċ	0 850339	5 187219	4 018859
Č	-0 512709	5 196463	4 013708
Č	-4 599444	4 937818	-3 370715
Č	-4.599444	4.937818	3.370715
C	4 932106	4 965769	-3 342126
C	4 932106	4 965769	3 342126
C	-5 559409	4 933243	-4 391369
C	-5 559409	4 933243	4 391369
C	5 904040	4 981769	-4 351489
C	5 904040	4 981769	4 351489
н	1 510412	5 665262	-4 735782
н	-1 171185	5 684383	-4 725353
н	1 510412	5 665262	4.725555
Н	-1 171185	5 684383	4 725353
н	-1.171103	5 / 1883/	-2 422055
н	-4.837403	5 / 1883/	2.422055
н	5 1/0857	5 117322	-2 388602
и Ц	5 1/0857	5 447322	2.388602
и Ц	6 5 4 5 4 5 2	5 362555	2.388092 4 201567
и Ц	-0.343432	5.362555	4.201567
и Ц	-0.343432 6 870476	5 128028	4.201307
н Ц	6 870476	5 428928	4.149203
11	0.0/94/0	3.420920	4.149203
S7-	Aσ(111)-TPP		
F=	-8236775070°	3 eV	Symmetry: C.
Δσ	1 668103	-1 641278	
Δσ	-0.834052	-1 641278	1 444620
Δσ	-0.834052	-1 641278	-1 444620
Δσ	9 174555	-1.641270	-1.444020
Δσ	-8 340500	-1 641277	5 778474
Δσ	9 174555	-1 641277	4 333848
Δσ	-0 834055	-1 641277	10 112322
Δσ	-8 340500	-1 641277	-5 778474
Δσ	-0 834055	-1 641277	-10 112322
Δσ	11 676708	-1 641274	-5 778467
Δσ	-10 842654	-1.641274	7 223092
Δσ	11 676708	-1 641274	5 778467
Δσ	-0.834054	-1 641274	13 001559
Δσ	-10 847654	-1 641274	-7 222002
Δσ	-0 834054	-1 641274	-13 001559
Δσ	4 170256	-1 641274	-1 444616
Δσ	-3 336202	-1 641274	2 889240
Δσ	4 170256	-1 641274	1 444616
Δσ	-0 834054	-1 641274	4 333856
- 18	0.05-05-	1.0712/7	1.555050

Ag	-3.336202	-1.641274	-2.889240
Ag	-0.834054	-1.641274	-4.333856
Ag	9.174558	-1.641273	-1.444606
Ag	-5.838345	-1.641273	7.223097
Ag	9.174558	-1.641273	1.444606
Ag	-3.336213	-1.641273	8.667703
Ag	-5.838345	-1.641273	-7.223097
Ag	-3.336213	-1.641273	-8.667703
Ag	6.672402	-1.641271	-2.889230
Ag	-5 838348	-1 641271	4 333854
Ag	6.672402	-1.641271	2.889230
Ag	-0.834054	-1.641271	7.223084
Ag	-5 838348	-1 641271	-4 333854
Aσ	-0.834054	-1 641271	-7 223084
Aσ	11 676697	-1 641269	-2.889229
Δσ	-8 340494	-1 641269	8 667702
Δσ	11 676697	-1 641269	2 889229
Δσ	-3 336203	-1 641269	11 556930
Δσ	-8 340494	-1 641269	-8 667702
Δσ	-3 336203	-1 641269	-11 556930
Λg	6 672/12	-1.641269	0.000000
Λg	3 336206	1 6/1266	5 778470
Λg	3 336206	1 6/1266	5 778479
Ag	-3.330200	-1.041200	-3.778479
Ag	5 838351	-1.041203	0.000000
Ag	-5.858551	-1.041205	10.112321
Ag	-5.656551	-1.041203	-10.112321
Ag	1.008100	-1.041203	2.009233
Ag	2 226201	-1.041203	-2.889233
Ag	-5.550201	-1.041203	0.000000 5 778477
Ag	1.008103	-1.041239	3.//04//
Ag	4.1/0230	-1.041239	4.333838
Ag	1.008103	-1.041259	-5.//84//
Ag	-5.838359	-1.641259	-1.444619
Ag	4.1/0256	-1.641259	-4.333838
Ag	-5.838359	-1.641259	1.444619
Ag	1.668099	-1.641254	8.00//11
Ag	0.072408	-1.641254	5.//84/2
Ag	1.668099	-1.641254	-8.66//11
Ag	-8.340507	-1.641254	-2.889239
Ag	6.6/2408	-1.641254	-5.778472
Ag	-8.340507	-1.641254	2.889239
Ag	4.170254	-1.641251	7.223091
Ag	4.170254	-1.641251	-7.223091
Ag	-8.340507	-1.641251	0.000000
Ag	1.668105	-1.641250	11.556939
Ag	9.174550	-1.641250	7.223091
Ag	1.668105	-1.641250	-11.556939
Ag	-10.842655	-1.641250	-4.333848
Ag	9.174550	-1.641250	-7.223091

Ag	-10.842655	-1.641250 4.333848
Ag	4.170250	-1.641246 10.112325
Ag	6.672406	-1.641246 8.667705
Ag	4.170250	-1.641246 -10.112325
Ag	-10.842656	-1.641246 -1.444620
Ag	6.672406	-1.641246 -8.667705
Ag	-10.842656	-1.641246 1.444620
Ag	13.185879	0.422179 -7.543353
Ag	-13.125675	0.422179 7.647630
Ag	13.185879	0.422179 7.543353
Ag	-0.060204	0.422179 15.190983
Ag	-13.125675	0.422179 -7.647630
Ag	-0.060204	0.422179 -15.190983
Ag	7.967890	1.220392 -4.553228
Ag	-7.927156	1.220392 4.623781
Ag	7.967890	1.220392 4.553228
Ag	-0.040734	1.220392 9.177009
Ag	-7.927156	1.220392 -4.623781
Ag	-0.040734	1.220392 -9.177009
Ag	2.652585	1.109313 -1.525809
Ag	-2.647682	1.109313 1.534302
Ag	2.652585	1.109313 1.525809
Ag	-0.004903	1.109313 3.060111
Ag	-2.647682	1.109313 -1.534302
Ag	-0.004903	1.109313 -3.060111
Ag	10.586752	1.278114 -6.048115
Ag	-10.531197	1.278114 6.144339
Ag	10.586752	1.278114 6.048115
Ag	-0.055555	1.278114 12.192454
Ag	-10.531197	1.278114 -6.144339
Ag	-0.055555	1.278114 -12.192454
Ag	5.321744	1.213580 -3.048868
Ag	-5.301269	1.213580 3.084331
Ag	5.321744	1.213580 3.048868
Ag	-0.020475	1.213580 6.133199
Ag	-5.301269	1.213580 -3.084331
Ag	-0.020475	1.213580 -6.133199
Ag	10.633781	1.246795 -3.047499
Ag	-7.956102	1.246795 7.685375
Ag	10.633781	1.246795 3.047499
Ag	-2.677679	1.246795 10.732874
Ag	-7.956102	1.246795 -7.685375
Ag	-2.677679	1.246795 -10.732874
Ag	0.000000	0.986107 0.000000
Ag	5.301928	1.221224 0.000000
Ag	-2.650964	1.221224 4.591604
Ag	-2.650964	1.221224 -4.591604
Ag	13.377237	0.744213 -4.506497
Ag	-10.591360	0.744213 9.331778

Ag	13.377237	0.744213	4.506497
Ag	-2.785877	0.744213	13.838275
Ag	-10.591360	0.744213	-9.331778
Ag	-2.785877	0.744213	-13.838275
Ag	10.604750	1.192095	0.000000
Ag	-5.302375	1.192095	9.183983
Ag	-5.302375	1.192095	-9.183983
Ag	7.970762	1.195784	-1.526104
Ag	-5.307026	1.195784	6.139831
Ag	7.970762	1.195784	1.526104
Ag	-2.663737	1.195784	7.665935
Ag	-5.307026	1.195784	-6.139831
Ag	-2.663737	1.195784	-7.665935
Ag	13.381081	0.722624	-1.505266
Ag	-7.994139	0.722624	10.835723
Ag	13.381081	0.722624	1.505266
Ag	-5.386942	0.722624	12.340989
Ag	-7.994139	0.722624	-10.835723
Ag	-5.386942	0.722624	-12.340989
Ag	2.632687	1.203998	4.559948
Ag	2.632687	1.203998	-4.559948
Ag	-5.265374	1.203998	0.000000
Ag	2.608606	1.238807	7.620201
Ag	5.294985	1.238807	6.069220
Ag	2.608606	1.238807	-7.620201
Ag	-7.903591	1.238807	-1.550982
Ag	5.294985	1.238807	-6.069220
Ag	-7.903591	1.238807	1.550982
Ag	2.586859	1.232308	10.659570
Ag	7.938029	1.232308	7.570071
Ag	2.586859	1.232308	-10.659570
Ag	-10.524888	1.232308	-3.089499
Ag	7.938029	1.232308	-7.570071
Ag	-10.524888	1.232308	3.089499
Ag	5.252888	1.194784	9.098269
Ag	5.252888	1.194784	-9.098269
Ag	-10.505777	1.194784	0.000000
Ag	2.554869	0.199030	13.731559
Ag	10.614444	0.199030	9.078361
Ag	2.554869	0.199030	-13.731559
Ag	-13.169314	0.199030	-4.653198
Ag	10.614444	0.199030	-9.078361
Ag	-13.169314	0.199030	4.653198
Ag	5.182871	0.251160	12.158823
Ag	7.938414	0.251160	10.567909
Ag	5.182871	0.251160	-12.158823
Ag	-13.121285	0.251160	-1.590914
Ag	7.938414	0.251160	-10.567909
Ag	-13.121285	0.251160	1.590914

Н	-1.895525	3.735312	5.063171
Н	-1.895525	3.735312	-5.063171
Н	2.752083	3.732729	5.059262
Н	2.752083	3.732729	-5.059262
Н	-3.600905	3.922864	6.843675
Н	-3.600905	3.922864	-6.843675
Н	4.407679	4.013925	6.860815
Н	4.407679	4.013925	-6.860815
Η	5.530271	3.931102	-1.339215
Н	5.530271	3.931102	1.339215
Η	-4.672448	3.859610	1.339456
Н	-4.672448	3.859610	-1.339456
С	4.675182	4.085752	0.691925
С	4.675182	4.085752	-0.691925
С	-3.826753	4.053162	0.690938
С	-3.826753	4.053162	-0.690938
С	-2.850430	4.216187	4.841017
С	-2.850430	4.216187	-4.841017
С	3.687241	4.252416	4.843167
С	3.687241	4.252416	-4.843167
С	4.624687	4.417369	5.868546
С	4.624687	4.417369	-5.868546
С	-3.810924	4.333997	5.854128
С	-3.810924	4.333997	-5.854128
С	3.330968	4.319916	-1.145430
С	3.330968	4.319916	1.145430
С	-2.489768	4.320487	1.144094
С	-2.489768	4.320487	-1.144094
Ν	0.419105	4.407650	2.065394
Ν	0.419105	4.407650	-2.065394
Ν	2.550977	4.386455	0.000000
Ν	-1.712154	4.410620	0.000000
Η	-0.704076	4.550891	0.000000
С	2.884511	4.585897	2.468871
С	2.884511	4.585897	-2.468871
С	-2.048002	4.582131	2.470076
С	-2.048002	4.582131	-2.470076
Η	1.539076	4.502951	0.000000
С	3.911297	4.760995	3.541338
С	3.911297	4.760995	-3.541338
С	-3.080561	4.729295	3.539774
С	-3.080561	4.729295	-3.539774
С	5.835045	5.079115	5.617818
С	5.835045	5.079115	-5.617818
Н	6.579345	5.187666	6.409658
Н	6.579345	5.187666	-6.409658
С	1.515570	4.783503	2.815636
С	1.515570	4.783503	-2.815636
С	-0.680402	4.778358	2.818113

С	-0.680402	4.778358	-2.818113
С	-5.043488	4.947005	5.593452
С	-5.043488	4.947005	-5.593452
Н	-5.804259	5.011337	6.375016
Η	-5.804259	5.011337	-6.375016
С	5.115065	5.474178	3.326589
С	5.115065	5.474178	-3.326589
C	6.069658	5.614264	4.341625
C	6.069658	5.614264	-4.341625
C	-4.307252	5.402066	3.318533
Č	-4.307252	5.402066	-3.318533
Ċ	-5 280294	5 491789	4 321046
Ċ	-5 280294	5 491789	-4 321046
C	-0 264715	5 458801	4 042624
C	-0 264715	5 458801	-4 042624
C	1 097207	5 465841	4 039218
C	1.097207	5 465841	-4 039218
н	6 991302	6 164591	4 139007
Н	6 991302	6 164591	-4 139007
Н	5 287407	5 954192	2 362463
н	5 287407	5 95/192	-2.362463
н	-0.924017	5 020050	1 765223
н Ц	-0.924017	5.020050	4.765223
н Ц	-0.924017	5.929939	-4.760223
н Ц	1.753790	5.942857	4.760250
н Ц	1.755790	5.942037	-4.700230
н Ц	-4.485105	5.887515	2.338300
н Ц	-4.465105	5.007515	-2.338300
п u	-0.220130	6.008118	4.112423
11	-0.220130	0.000110	-4.112423
S8-]	Benzene Dime	er	
E= -	147.61618987	7 eV	
Н	0.965485	-0.839188	2.188888
С	0.436542	-0.932293	1.236708
С	-0.943494	-1.189527	1.222021
Н	-1.489074	-1.298908	2.162880
С	-1.623784	-1.302856	-0.000680
Н	-2.698982	-1.500725	-0.012122
C	-0.922975	-1.158500	-1.208889
Н	-1.452549	-1.243432	-2.161353
C	0.456923	-0.901190	-1.193919
H	1 001834	-0 783792	-2 134307
C	1 136458	-0 787976	0.028824
Ĥ	2 209793	-0 580920	0.040502
Н	1 553628	4 233294	2 161717
C	1.023484	4.152424	1.209115
Č	-0.357054	3.899409	1,193669
H	-0.901908	3,780595	2.133946
C	-1.036919	3.792425	-0.029319
_			

Н	-2.110367	3.588855	-0.041031
С	-0.336995	3.938023	-1.237017
Η	-0.866234	3.849806	-2.189227
С	1.043533	4.191417	-1.221984
Η	1.589460	4.302948	-2.162577
С	1.723888	4.297748	0.001163
Н	2.799327	4.492364	0.013014
S9-2	H-TPP		
E= -:	521.9787383	3 eVSymmet	ry: C _{2v}
С	-2.452318	2.471657	0.019009
С	-2.907704	1.136394	0.006986
С	-1.093497	2.874835	0.036864
С	-4.270732	0.688210	-0.093962
С	-4.270732	-0.688210	-0.093962
С	-2.907704	-1.136394	0.006986
С	-0.680818	4.275988	0.147679
С	0.680818	4.275988	0.147679
С	1.093497	2.874835	0.036864
Ν	-2.123466	0.000000	0.064439
Η	-1.104977	0.000000	0.075067
Н	-5.128234	1.348272	-0.176076
Н	-5.128234	-1.348272	-0.176076
Ν	0.000000	2.040719	-0.017192
Н	-1.346545	5.129081	0.239989
Н	1.346545	5.129081	0.239989
С	-2.452318	-2.471657	0.019009
С	-1.093497	-2.874835	0.036864
С	-0.680818	-4.275988	0.147679
С	0.680818	-4.275988	0.147679
С	1.093497	-2.874835	0.036864
Ν	0.000000	-2.040719	-0.017192
Н	-1.346545	-5.129081	0.239989
Η	1.346545	-5.129081	0.239989
С	2.452318	2.471657	0.019009
С	4.270732	0.688210	-0.093962
С	4.270732	-0.688210	-0.093962
С	2.907704	-1.136394	0.006986
Ν	2.123466	0.000000	0.064439
Η	5.128234	-1.348272	-0.176076
С	2.452318	-2.471657	0.019009
С	2.907704	1.136394	0.006986
Η	5.128234	1.348272	-0.176076
Η	1.104977	0.000000	0.075067
С	3.508973	3.535430	0.009818
С	3.608055	4.440097	-1.065809
С	4.425488	3.650022	1.073830
С	4.597645	5.432205	-1.078128
С	5.413301	4.644195	1.065277

С	5.503858	5.538833	-0.011872
Η	2.897836	4.358176	-1.890858
Н	4.353843	2.951491	1.910021
Η	4.662405	6.120333	-1.923896
Η	6.108287	4.723348	1.904178
Η	6.274368	6.313572	-0.019994
С	3.508973	-3.535430	0.009818
С	3.608055	-4.440097	-1.065809
С	4.425488	-3.650022	1.073830
С	4.597645	-5.432205	-1.078128
С	5.413301	-4.644195	1.065277
С	5.503858	-5.538833	-0.011872
Н	2.897836	-4.358176	-1.890858
Η	4.353843	-2.951491	1.910021
Η	4.662405	-6.120333	-1.923896
Η	6.108287	-4.723348	1.904178
Η	6.274368	-6.313572	-0.019994
С	-3.508973	3.535430	0.009818
С	-3.608055	4.440097	-1.065809
С	-4.425488	3.650022	1.073830
С	-4.597645	5.432205	-1.078128
С	-5.413301	4.644195	1.065277
С	-5.503858	5.538833	-0.011872
Η	-2.897836	4.358176	-1.890858
Η	-4.353843	2.951491	1.910021
Η	-4.662405	6.120333	-1.923896
Η	-6.108287	4.723348	1.904178
Η	-6.274368	6.313572	-0.019994
С	-3.508973	-3.535430	0.009818
С	-3.608055	-4.440097	-1.065809
С	-4.425488	-3.650022	1.073830
С	-4.597645	-5.432205	-1.078128
С	-5.413301	-4.644195	1.065277
С	-5.503858	-5.538833	-0.011872
Η	-2.897836	-4.358176	-1.890858
Η	-4.353843	-2.951491	1.910021
Η	-4.662405	-6.120333	-1.923896
Η	-6.108287	-4.723348	1.904178
Η	-6.274368	-6.313572	-0.019994

S10- Cu(111)-166 Surface Cluster

E = -4	429.86498153	3 eV 5	Symmetry: C _s
Cu	8.105765	-1.142575	6.381640
Cu	8.105765	-1.142575	-6.381640
Cu	1.473780	-1.142575	10.210618
Cu	1.473780	-1.142575	-10.210618
Cu	-9.579545	-1.142575	-3.828978
Cu	-9.579545	-1.142575	3.828978
Cu	5.895106	-1.142573	7.657964

Cu	5 895106	-1 142573	-7 657964	Cu	-2 947552	-1 142563	7 657965
Cu	3 684439	-1.142573	8 934294	Cu	-2.947552	-1.142563	-7 657965
Cu	3 684439	-1.142573	-8 934294	Cu	-5.158216	-1.142563	6 381637
Cu	0 570545	-1.1+2575 1 1/2573	1 276320	Cu	5 158216	-1.142505	6 381637
Cu	0 570545	-1.142373 1 1/2573	1 276329	Cu	-3.138210	-1.142505	-0.381037
Cu	5 805105	-1.142575 1 1/2571	5 105304	Cu	3 684441	1 1/2562	1.276321
Cu	5 895105	-1.142571 1 1/2571	5 105304	Cu	0.736804	-1.142502	-1.270321
Cu	1 472770	-1.142371 1 142571	-5.105504	Cu	-0.730894	-1.142302	3.828980
Cu	1.473770	-1.142371 1 1/2571	7.657963	Cu	-0.730894	-1.142302	-3.828980
Cu	7 269976	-1.142371 1 142571	-7.037903	Cu	-2.94/34/	-1.142502	2.552659
Cu	-7.308870	-1.142371 1 142571	-2.332039	Cu	-2.94/34/	-1.142302	-2.332039
Cu	-7.306670	-1.142371 1 142560	2.332039	Cu	5 158214	-1.142301	0.000000 8 024288
Cu	10.310433	-1.142309	-5.105510	Cu	-3.136214	-1.142301	0.934200
Cu	10.310433	-1.142309	5.105510	Cu	-3.136214	-1.142301	-8.934288
Cu	2.084438	-1.142309	0.381033	Cu	3.893100	-1.142300	0.000000
Cu	5.084458	-1.142309	-0.381033	Cu	1.4/5//8	-1.142300	0.000000
Cu	-0./30888	-1.142309	11.480948	Cu	-0.730889	-1.142560	1.2/0329
Cu	-0./30888	-1.142309	-11.480948	Cu	-0./30889	-1.142560	-1.2/0329
Cu	-/.3088/0	-1.142569	0.000000	Cu	-2.94/550	-1.142560	5.105306
Cu	-9.5/9545	-1.142569	0.38103/	Cu	-2.94/550	-1.142560	-5.105306
Cu	-9.5/9545	-1.142569	-0.38103/	Cu	8.842651	0.941652	/.65/964
Cu	3.684442	-1.14256/	3.828982	Cu	8.842651	0.941652	-/.65/964
Cu	3.684442	-1.14256/	-3.828982	Cu	2.210666	0.941652	11.486943
Cu	1.4/3//4	-1.14256/	5.105311	Cu	2.210666	0.941652	-11.486943
Cu	1.4/3//4	-1.14256/	-5.105311	Cu	-11.05331/	0.941652	-3.8289/8
Cu	-5.158216	-1.142567	-1.2/6329	Cu	-11.05331/	0.941652	3.828978
Cu	-5.158216	-1.142567	1.2/6329	Cu	6.631992	0.941654	8.934289
Cu	8.105/64	-1.142566	-3.828979	Cu	6.631992	0.941654	-8.934289
Cu	8.105764	-1.142566	3.828979	Cu	4.421325	0.941654	10.210618
Cu	-0./36889	-1.142566	8.934287	Cu	4.421325	0.941654	-10.210618
Cu	-0.736889	-1.142566	-8.934287	Cu	-11.053317	0.941654	-1.276329
Cu	-7.368876	-1.142566	5.105308	Cu	-11.053317	0.941654	1.276329
Cu	-7.368876	-1.142566	-5.105308	Cu	6.631996	0.941656	6.381637
Cu	10.316432	-1.142565	-2.552650	Cu	6.631996	0.941656	-6.381637
Cu	10.316432	-1.142565	2.552650	Cu	2.210661	0.941656	8.934296
Cu	-2.947556	-1.142565	10.210617	Cu	2.210661	0.941656	-8.934296
Cu	-2.947556	-1.142565	-10.210617	Cu	-8.842658	0.941656	-2.552659
Cu	-7.368876	-1.142565	7.657967	Cu	-8.842658	0.941656	2.552659
Cu	-7.368876	-1.142565	-7.657967	Cu	11.053319	0.941658	-6.381635
Cu	5.895101	-1.142564	2.552657	Cu	11.053319	0.941658	6.381635
Cu	5.895101	-1.142564	-2.552657	Cu	4.421329	0.941658	7.657966
Cu	-0.736884	-1.142564	6.381636	Cu	4.421329	0.941658	-7.657966
Cu	-0.736884	-1.142564	-6.381636	Cu	-0.000002	0.941658	12.763272
Cu	-5.158216	-1.142564	3.828978	Cu	-0.000002	0.941658	-12.763272
Cu	-5.158216	-1.142564	-3.828978	Cu	-8.842658	0.941658	0.000000
Cu	8.105768	-1.142563	1.276328	Cu	-11.053317	0.941658	6.381637
Cu	8.105768	-1.142563	-1.276328	Cu	-11.053317	0.941658	-6.381637
Cu	1.473774	-1.142563	2.552651	Cu	4.421328	0.941660	5.105306
Cu	1.473774	-1.142563	-2.552651	Cu	4.421328	0.941660	-5.105306
Cu	-2.947547	-1.142563	0.000000	Cu	2.210661	0.941660	6.381635

Cu	2.210661	0.941660	-6.381635	
Cu	-6.631989	0.941660	-1.276329	
Cu	-6.631989	0.941660	1.276329	
Cu	8.842655	0.941661	-5.105312	
Cu	8.842655	0.941661	5.105312	
Cu	0.000003	0.941661	10.210620	
Cu	0.000003	0.941661	-10.210620	
Cu	-8.842658	0.941661	5.105308	
Cu	-8.842658	0.941661	-5.105308	
Cu	11.053323	0.941662	-3.828983	
Cu	11.053323	0.941662	3.828983	
Cu	-2.210665	0.941662	11.486950	
Cu	-2.210665	0.941662	-11.486950	
Cu	-8.842658	0.941662	7.657967	
Cu	-8.842658	0.941662	-7.657967	
Cu	6.631987	0.941663	-3.828981	
Cu	6.631987	0.941663	3.828981	
Cu	0.000002	0.941663	7.657960	
Cu	0.000002	0.941663	-7.657960	
Cu	-6.631989	0.941663	3.828978	
Cu	-6.631989	0.941663	-3.828978	
Cu	2.210665	0.941664	3.828984	
Cu	2.210665	0.941664	-3.828984	
Cu	-4.421330	0.941664	0.000000	
Cu	8.842655	0.941665	-2.552652	
Cu	8.842655	0.941665	2.552652	
Cu	4.421332	0.941665	2.552654	
Cu	4.421332	0.941665	-2.552654	
Cu	-0.000003	0.941665	5.105313	
Cu	-0.000003	0.941665	-5.105313	
Cu	-2.210666	0.941665	8.934289	
Cu	-2.210666	0.941665	-8.934289	
Cu	-4.421330	0.941665	2.552659	
Cu	-4.421330	0.941665	-2.552659	
Cu	-6.631989	0.941665	6.381637	
Cu	-6.631989	0.941665	-6.381637	
Cu	11.053313	0.941666	-1.276327	
Cu	11.053313	0.941666	1.276327	
Cu	-4.421325	0.941666	10.210614	
Cu	-4.421325	0.941666	-10.210614	
Cu	-6.631989	0.941666	8.934286	
Cu	-6.631989	0.941666	-8.934286	
Cu	6.631991	0.941667	1.276330	
Cu	6.631991	0.941667	-1.276330	
Cu	-2.210662	0.941667	6.381638	
Cu	-2.210662	0.941667	-6.381638	
Cu	-4.421330	0.941667	5.105308	
Cu	-4.421330	0.941667	-5.105308	
Cu	8.842659	0.941668	0.000000	

Cu	2.210664	0.941668	1.276323
Cu	2.210664	0.941668	-1.276323
Cu	-0.000004	0.941668	2.552653
Cu	-0.000004	0.941668	-2.552653
Cu	-2.210660	0.941668	1.276329
Cu	-2.210660	0.941668	-1.276329
Cu	-4.421329	0.941668	7.657967
Cu	-4.421329	0.941668	-7.657967
Cu	4.421323	0.941669	0.000000
Cu	-2.210661	0 941669	3 828978
Cu	-2.210661	0.941669	-3 828978
Cu	0.000000	0 941670	0 000000
eu	0.000000	0.9 11070	0.000000
S11-	$A_{\sigma}(111)-166$	Surface Clus	ter
E = -2	298 19021653	eV Sy	vmmetry: Ca
Δσ	1 668103	-1 641278	0.000000
Δσ	-0.834052	-1 641278	1 444620
Δσ	-0.834052	-1 641278	-1 444620
Δσ	9 174555	-1.041270 -1.641277	-4 333848
Λg	8 340500	1 6/1277	5 778/7/
Ag	0 174555	-1.041277	1 2 2 2 8 / 8
Ag	9.174355	-1.041277	4.555646
Ag	-0.834033	-1.041277	10.112322 5 770 <i>1</i> 71
Ag	-8.340300	-1.041277	-3.//04/4
Ag	-0.834033	-1.0412//	-10.112322
Ag	11.0/0/08	-1.0412/4	-3.//840/
Ag	-10.842034	-1.0412/4	7.223092
Ag	11.0/0/08	-1.0412/4	3.//840/
Ag	-0.834054	-1.0412/4	13.001559
Ag	-10.842654	-1.6412/4	-7.223092
Ag	-0.834054	-1.6412/4	-13.001559
Ag	4.1/0256	-1.6412/4	-1.444616
Ag	-3.336202	-1.641274	2.889240
Ag	4.170256	-1.641274	1.444616
Ag	-0.834054	-1.641274	4.333856
Ag	-3.336202	-1.641274	-2.889240
Ag	-0.834054	-1.641274	-4.333856
Ag	9.174558	-1.641273	-1.444606
Ag	-5.838345	-1.641273	7.223097
Ag	9.174558	-1.641273	1.444606
Ag	-3.336213	-1.641273	8.667703
Ag	-5.838345	-1.641273	-7.223097
Ag	-3.336213	-1.641273	-8.667703
Ag	6.672402	-1.641271	-2.889230
Ag	-5.838348	-1.641271	4.333854
Ag	6.672402	-1.641271	2.889230
Ag	-0.834054	-1.641271	7.223084
Ag	-5.838348	-1.641271	-4.333854
Ag	-0.834054	-1.641271	-7.223084
Ag	11.676697	-1.641269	-2.889229

Ag	-8.340494	-1.641269	8.667702	Ag	7.967890	1.220392	4.553228
Ag	11.676697	-1.641269	2.889229	Ag	-0.040734	1.220392	9.177009
Ag	-3.336203	-1.641269	11.556930	Ag	-7.927156	1.220392	-4.623781
Ag	-8.340494	-1.641269	-8.667702	Ag	-0.040734	1.220392	-9.177009
Ag	-3.336203	-1.641269	-11.556930	Ag	2.652585	1.109313	-1.525809
Ag	6.672412	-1.641266	0.000000	Ag	-2.647682	1.109313	1.534302
Ag	-3.336206	-1.641266	5.778479	Ag	2.652585	1.109313	1.525809
Ag	-3.336206	-1.641266	-5.778479	Ag	-0.004903	1.109313	3.060111
Ag	11.676702	-1.641265	0.000000	Ag	-2.647682	1.109313	-1.534302
Ag	-5.838351	-1.641265	10.112321	Ag	-0.004903	1.109313	-3.060111
Ag	-5.838351	-1.641265	-10.112321	Ag	10.586752	1.278114	-6.048115
Ag	1.668100	-1.641263	2.889235	Ag	-10.531197	1.278114	6.144339
Ag	1.668100	-1.641263	-2.889235	Ag	10.586752	1.278114	6.048115
Ag	-3.336201	-1.641263	0.000000	Ag	-0.055555	1.278114	12.192454
Ag	1.668103	-1.641259	5.778477	Ag	-10.531197	1.278114	-6.144339
Ag	4.170256	-1.641259	4.333858	Ag	-0.055555	1.278114	-12.192454
Ag	1.668103	-1.641259	-5.778477	Ag	5.321744	1.213580	-3.048868
Ag	-5.838359	-1.641259	-1.444619	Ag	-5.301269	1.213580	3.084331
Ag	4.170256	-1.641259	-4.333858	Ag	5.321744	1.213580	3.048868
Ag	-5 838359	-1 641259	1 444619	Ag	-0.020475	1 213580	6 133199
Ag	1 668099	-1 641254	8 667711	Ag	-5 301269	1 213580	-3 084331
Ag	6 672408	-1 641254	5 778472	Ag	-0.020475	1 213580	-6 133199
Aσ	1 668099	-1 641254	-8 667711	Ασ	10 633781	1 246795	-3 047499
Aσ	-8 340507	-1 641254	-2.889239	Ag	-7 956102	1 246795	7 685375
Ag	6 672408	-1 641254	-5 778472	Ag	10 633781	1 246795	3 047499
Ag	-8 340507	-1 641254	2.889239	Ag	-2.677679	1 246795	10 732874
Aσ	4 170254	-1 641251	7 223091	Ag	-7 956102	1 246795	-7 685375
Δσ	4 170254	-1 641251	-7 223091	Ασ	-2 677679	1 246795	-10 732874
Ag	-8 340507	-1 641251	0.000000	Ag	0.000000	0.986107	0 000000
Δσ	1 668105	-1 641250	11 556939	Aσ	5 301928	1 221224	0.000000
Δσ	9 174550	-1 641250	7 223091	Aσ	-2 650964	1 221221	4 591604
Δσ	1 668105	-1 641250	-11 556939	Aσ	-2 650964	1 221221	-4 591604
Δσ	-10 842655	-1 641250	-4 333848	Aσ	13 377237	0 744213	-4 506497
Δσ	9 174550	-1 641250	-7 223091	Aσ	-10 591360	0.744213	9 331778
Aσ	-10 842655	-1 641250	4 333848	Ασ	13 377237	0 744213	4 506497
Ag	4 170250	-1 641246	10 112325	Ag	-2.785877	0 744213	13 838275
Aσ	6 672406	-1 641246	8 667705	Ag	-10 591360	0 744213	-9 331778
Δσ	4 170250	-1 641246	-10 112325	Aσ	-2 785877	0 744213	-13 838275
Aσ	-10.842656	-1 641246	-1 444620	Ασ	10 604750	1 192095	0.000000
Aσ	6 672406	-1 641246	-8 667705	Ag	-5 302375	1 192095	9 183983
Aσ	-10 842656	-1 641246	1 444620	Ag	-5 302375	1 192095	-9 183983
Δσ	13 185879	0 422179	-7 543353	Ασ	7 970762	1 195784	-1 526104
Aσ	-13 125675	0 422179	7 647630	Ag	-5 307026	1 195784	6 139831
Δσ	13 185879	0.422179	7 543353	Aσ	7 970762	1 195784	1 526104
Δσ	-0.060204	0.422179	15 190983	Aσ	-2 663737	1 195784	7 665935
Δσ	-13 125675	0 422179	-7 647630	Δσ	-5 307026	1 195784	-6 139831
4 15 Ασ	-0.060204	0 422179	-15 190983	Δσ	-2.663737	1 195784	-7 665935
Δσ	7 967890	1 220392	-4 553228	Δσ	13 381081	0 722624	-1 505266
Δσ	-7 927156	1 220392	4 623781	Δσ	-7 994139	0 722624	10 835723
115	1.74/150	1.220372	7.043701	¹ ¹ ¹ ²	1.77137	0.122024	10.055725

Ag	13.381081	0.722624	1.505266
Ag	-5.386942	0.722624	12.340989
Ag	-7.994139	0.722624	-10.835723
Ag	-5.386942	0.722624	-12.340989
Ag	2.632687	1.203998	4.559948
Ag	2.632687	1.203998	-4.559948
Ag	-5.265374	1.203998	0.000000
Ag	2.608606	1.238807	7.620201
Ag	5.294985	1.238807	6.069220
Ag	2.608606	1.238807	-7.620201
Ag	-7.903591	1.238807	-1.550982
Ag	5.294985	1.238807	-6.069220
Ag	-7.903591	1.238807	1.550982
Ag	2.586859	1.232308	10.659570
Ag	7.938029	1.232308	7.570071
Ag	2.586859	1.232308	-10.659570
Ag	-10.524888	1.232308	-3.089499
Ag	7.938029	1.232308	-7.570071

Ag	-10.524888	1.232308	3.089499
Ag	5.252888	1.194784	9.098269
Ag	5.252888	1.194784	-9.098269
Ag	-10.505777	1.194784	0.000000
Ag	2.554869	0.199030	13.731559
Ag	10.614444	0.199030	9.078361
Ag	2.554869	0.199030	-13.731559
Ag	-13.169314	0.199030	-4.653198
Ag	10.614444	0.199030	-9.078361
Ag	-13.169314	0.199030	4.653198
Ag	5.182871	0.251160	12.158823
Ag	7.938414	0.251160	10.567909
Ag	5.182871	0.251160	-12.158823
Ag	-13.121285	0.251160	-1.590914
Ag	7.938414	0.251160	-10.567909
Ag	-13.121285	0.251160	1.59091

References

[1] te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. *J. Comput. Chem.* **22**, 931–967 (2001).

[2] Baerends, E. J.; Autschbach, J.; Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; et al. ADF2010.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

[3] Perdew, J. P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. *Phys. Rev. B* **54**, 16533–16539 (1996).

[4] Zhang, Y.; Yang, W. Comment on Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **80**, 89 (1998).

[5] Perdew, J. P.; Burke, K.; Ernzerhof, M. Reply to Comment on Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **80**, 891 (1998).

[6] Hammer, B.; Hansen, L. B.; Norskov, J. K. Improved Adsorption Energetics within Density-Functional Theory using Revised Perdew-Burke-Ernzerhof Functionals. *Phys. Rev. B* **59**, 7413–7421. (1999).

[7] Grimme, S.; Antony, J., Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).

[8] Suh, I.; Ohta, H.; Waseda, Y. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. *J. Mater. Sci.* **23**, 757-760 (1988).

[9] Pitoňák, M.; Neogrády, P.; Řezáč, J.; Jurečka, P.; Urban, M.; Hobza, P. Benzene Dimer: High-Level Wave Function and Density Functional Theory Calculations. **4**, 1829-1834 (2008).

[10] Lomas, J. R.; Baddeley, C. J.; Tikhov, M. S.; Lambert, R M. Ethyne Cyclization to Benzene over Cu(110). *Langmuir.* **11**, 3048-3053 (1995).

[11] (a) Lukas, S.; Witte, G.; Wöll, C. Adsorption of acenes on flat and vicinal Cu(111) surfaces: Step induced formation of lateral order. J. Chem. Phys. 114, 10123 (2001).
(b) Xi, M.; Yang, M. X.; Jo, S. K.; Bent, B. E.; Stevens, P. Benzene adsorption on Cu(111):Formation of a stable bilayer. J. Chem. Phys. 101, 9122 (1994)

[12] Witte, G.; Lukas, S.; Bagus, P. S.; Wöll, C. Vacuum level alignment at organic/metal junctions: "Cushion" effect and the interface dipole. *Appl. Phys. Lett.* **87**, 263502 (2005)

[13] Triguero, L.; Föhlisch, A.; Vaterlaein, P.; Hasselström, J.; Weinelt, M.; Petterson, L. G. M.; Luo, Y.; Agren, H.; Nilsson, A. Direct Measurement of Donation/Back-Donation in Unsaturated Hydrocarbon Bonding to Metals. *J. Am. Chem. Soc.* **122**, 12310-12316 (2000).

[14] Bickelhaupt, F. M.; Baerends, E. J. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. *Rev. Comp. Chem.* **15**, 1-86 (2000).

[15] Hoffmann, R. A chemical and theoretical way to look at bonding on surfaces. *Rev. Mod. Phys.* **60**, 601-628 (1988).

[16] Glassey, W. G.; Hoffmann, R. A Cinoaratuve Study of p(2x2)-CO/M(111), M=Pt,Cu,Al Chemisorption Systems. *J. Phys. Chem. B* **105**, 3245-3260 (2001).

[17] Philipsen, P. H. T.; Baerends, E. J. The role of the Fermi surface in adsorbate-metal interaction: an energy decomposition analysis. *J. Phys. Chem. B* **110**, 12470-12479 (2006).

[18] Glassey, W. G. Energy Partitioning Studies of CO and NO Chemisorption on the Pd(111) Surface. *J. Phy. Chem. B* **108**, 5967-5979 (2004).

[19] Wiberg, K. B.; Rablen, P. R. Comparison of Atomic Charges Derived via Different Procedures. *J. Comput. Chem.* **14**, 1504-1518 (1993).