Electronic Supplementary Information (ESI):

Micrometer-Sized Gold Nanoplates: Starch-Mediated Photochemical Reduction Synthesis and Possibility of Application to Tip-Enhanced Raman Scattering (TERS)

Prompong Pienpinijtham,^{*a,b*} Xiao Xia Han,^{*a*} Toshiaki Suzuki,^{*a*} Chuchaat Thammacharoen,^{*b*} Sanong Ekgasit,^{*b,**} and Yukihiro Ozaki^{*a,**}

^aDepartment of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan

^bSensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Fig. S1 UV-visible spectrum of sunlight. The spectrum was collected by a fiber-optic portable UV/visible spectrometer (USB2000 UV/visible spectrometer, Ocean Optics). The integration time was 30 ms with 128 accumulation numbers, and the diameter of fiberoptic was 600 μm. A fiber-optic was pointed directly to the sun for collecting an energy profile.

Fig. S2 UV-visible spectra of gold ion mixtures (0.2 M HCl 5 mL + 200 ppm HAuCl₄ (pH 7) 10 mL) in the presence and absence of starch.

The spectrum of gold ion in the presence of starch reveals a small red-shift at the band of charge transfer from Cl⁻ to Au³⁺ center in AuCl₄⁻ (around 315 nm in spectrum) compared to that in the absence of starch. It indicates that the interaction between Cl⁻ and Au³⁺ in AuCl₄⁻ was disturbed and weakened. This red-shift can also be implied that the complex of [Au(III)Cl₄⁻-starch] was formed. However, we cannot confirm the occurrence of [Au(II)Cl₃⁻-starch] and [Au(I)Cl₂⁻-starch] by ourselves. Fortunately, there were many works that discussed and proposed about the mechanism of photochemical reduction. The process of reduction from Au(III)Cl₄⁻ to Au(II)Cl₃⁻ and Au(I)Cl₂⁻ via photoreduction and disproportionation is widely accepted.^{1,2} Therefore, the evidence of [Au(III)Cl₄⁻-starch] combined with the reports about the existence of Au(II)Cl₃⁻ and Au(I)Cl₂⁻ are confidential that starch-mediated photochemical reduction really happens.

Reference

- 1 S. Eustis, H.-Y. Hsu, M. A. El-Sayed, J. Phys. Chem. B, 2005, 109, 4811-4815.
- 2 S. Dong, C. Tang, H. Zhou, H. Zhao, Gold Bull., 2004, 37, 187–195.

Raman shift (cm ⁻¹)	Raman band assignment
330	in-plane Ph–C+–Ph bending
433	out-of-plane Ph–C+–Ph bending
519	ring skeletal vib radical orientation
554	ring skeletal vib radical orientation
718	out-of-plane ring C–H bending
753	out-of-plane ring C–H bending
799	out-of-plane ring C–H bending
907	ring skeletal vib radical orientation
935	ring skeletal vib radical orientation
1168	in-plane ring C–H bending
1293	ring C–C stretching
1363	N-phenyl stretching
1532	ring C–C stretching
1580	ring C–C stretching
1613	ring C–C stretching

Table S1 Raman band assignment for crystal violet.³

Reference

3 E. J. Liang, X. L. Ye, W. Kiefer, J. Phys. Chem. A, 1997, 101, 7330.