High-resolution through-space correlations between spin-1/2 and half-integer

quadrupolar nuclei with the MQ-D-R-INEPT NMR experiment.

Charlotte Martineau,*^a[†] Boris Bouchevreau,^a Francis Taulelle,^a

Julien Trébosc,^b Olivier Lafon,*^b Jean Paul Amoureux^b

Electronic Supplementary Information

Table of content

Derivation of Eq. 18 for the D-R-INEPT transfer efficiency

In the present section, we calculate the transfer efficiency, $f(\tau)$, of *D*-R-INEPT. For the sake of simplicity, we consider an isolated pair of spin-1/2 nuclei, *I* and *S*. Nevertheless, the dependence of $f(\tau)$ with the Euler angles $\Omega_{PR}^{D,IS} = \{ p, \beta_{PR}^{D,IS}, \gamma_{PR}^{D,IS} \}$ is identical for a pair of spin-1/2 and half-integer quadrupolar nuclei since in the *D*-R-INEPT sequence, the RF pulses applied to the quadrupolar nuclei are selective for the central transition (CT) and the terms in the density matrix corresponding to CT can be decomposed onto fictitious spin-1/2 operators $\{\hat{C}_x^I, \hat{C}_y^I, \hat{C}_z^I\}$. Furthermore, the relaxation phenomena and all spin interactions, with the exception of the *I-S* dipolar coupling, are disregarded. We assume the initial density operator is \hat{I}_x (or \hat{C}_x^I for a half-integer quadrupolar *I* nucleus). During the R³ (N = 1) recoupling applied on the *S* channel, the density matrix evolves under the effect of the AH given by Eq. S1:

$$\hat{I}_{x} \xrightarrow{\hat{H}_{D,IS}^{(1)}\tau} \cos(\omega_{D,IS}\tau)\hat{I}_{x} + 2\sin(\omega_{D,IS}\tau)\left[\cos(\phi)\hat{I}_{y}\hat{S}_{z} + \sin(\phi)\hat{I}_{y}\hat{S}_{y}\right] \qquad \text{Eq. (S1)}$$

After the application of the two 90° pulses of phase x on I and S channels, the density operator has the following form:

$$\hat{\rho}(t_{90}^{+}) = \cos(\omega_{D,IS}\tau)\hat{f}_{x} + 2\sin(\omega_{D,IS}\tau)\frac{1}{2}\cos(\phi)\hat{f}_{z}\hat{S}_{y} + \sin(\phi)\hat{f}_{z}\hat{S}_{z} \end{bmatrix} \qquad \text{Eq. (S2)}$$

where t_{90}^+ is the time point corresponding to the end of the 90° pulses. The first term in Eq. S2 is not transferred to the *S* nucleus and is discarded in the following. The two other terms in Eq. S2 are transferred and evolve under the Hamiltonian of Eq. 9. In particular, $2\hat{I}_z\hat{S}_y$ and $2\hat{I}_z\hat{S}_z$ operators are transformed into operator \hat{S}_x with respective pre-factors $-\cos(\phi)\sin(\omega_{D,IS}\tau)$ and $\sin(\phi)\sin(\omega_{D,IS}\tau)$. Therefore, the transfer efficiency is:

$$f(\tau) = \left\langle \left(\hat{S}_x \middle| \hat{S}_x \right)^1 \left(\hat{S}_x \middle| \hat{U} \hat{I}_x \hat{U}^\dagger \right) = \left\langle \sin^2 \left(\omega_{D,IS} \tau \right) \left\{ \cos^2 \left(\phi \right) + \sin^2 \left(\phi \right) \right\} \right\rangle$$
Eq. (S3)

which directly gives Eq. 18.

Table S1. P-Al distances $(d_{P-Al} < 3.25 \text{ Å})$, ${}^{31}P-{}^{27}Al$ dipolar $(|b_{P-Al}|/2\pi)$ and scalar couplings $(J_{P-Al})^{1}$ in AlPO₄-VPI-5.

Р	Al	$d_{P-Al}(A)$	$b_{P-Al}/2\pi$ (Hz)	$J_{\mathrm{P-Al}}(\mathrm{Hz})$
P1	Al2	3.096	425	
	A13	3.101	423	
	All	3.276	359	20
	All	3.318	345	25
P2	Al2	3.091	427	
	All	3.113	418	13
	A13	3.117	416	
	Al2	3.130	411	
Р3	Al3	3.087	429	
	Al3	3.117	417	
	All	3.157	401	15
	Al2	3.242	370	

Reference

1 J. Trébosc, J. P. Amoureux, L. Delevoye, J. W. Wiench, M. Pruski, Solid State Sci., 2004, 6, 1089.