SUPPLEMENTARY INFORMATION

Solute-Solvent Interactions in cryosolutions: A study of halothane/ammonia complexes

Bart Michielsen*, Johan J.J. Dom*, Benjamin J. van der Veken*, Susanne Hesse[#], Martin A. Suhm[#] and Wouter A. Herrebout*

* Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany

Fig. SF1 Scatter plots for the integrated intensity of the 2956 (upper four plots) and 2920 cm⁻¹ complex band (lower four plots) versus the product of the intensities of monomer halothane and NH₃. The data presented are based upon a series of 8 different solutions recorded at 213 K in which the mole fractions of halothane and NH₃ were varied between 2.0×10^{-4} and 1.1×10^{-2} and between 1.8×10^{-4} and 2.4×10^{-2} . The monomer intensities were approximated by numerically integrating the v_1 and v_4 absorption bands appearing in monomer halothane and monomer NH₃, respectively.

			monomer		1:1 complex				
			v _i	\mathcal{E}_{i}	$S_{ m i}$	v _i	\mathcal{E}_{i}	$S_{ m i}$	Δv
halothane	А	v_1	3186.15	3.4	61.9	3122.60	172.8	180.3	-63.55
		v_2	1365.19	80.2	3.2	1408.02	46.4	3.5	42.83
		v_3	1305.88	197.2	0.7	1308.02	192.7	1.0	2.14
		v_4	1258.91	15.3	4.2	1317.84	39.8	3.1	58.93
		v_5	1211.79	233.2	2.3	1205.31	216.9	2.4	-6.48
		v_6	1159.69	221.9	2.6	1171.70	215.2	2.0	12.01
		v_7	890.05	36.8	1.6	890.60	36.4	1.35	0.55
		v_8	848.46	74.6	3.1	845.83	83.5	3.8	-2.63
		v_9	737.45	19.1	8.9	734.88	26.2	11.0	-2.57
		v_{10}	676.66	27.0	1.2	676.30	29.5	1.0	-0.36
		v_{11}	560.92	4.3	2.0	560.30	4.3	2.0	-0.62
		v_{12}	525.56	5.0	1.7	526.37	8.0	1.6	0.81
		v_{13}	374.75	0.5	2.9	374.98	0.7	2.8	0.23
		v_{14}	320.25	0.6	3.1	320.41	1.0	3.0	0.16
		<i>v</i> ₁₅	238.81	0.4	2.4	241.67	1.3	2.3	2.86
		v_{16}	207.49	0.7	1.0	206.39	4.1	1.0	-1.10
		v_{17}	164.31	1.0	0.5	163.72	0.4	0.4	-0.59
		v_{18}	78.00	0.0	0.2	79.17	0.0	0.2	1.17
NH ₃	А	v_1	3529.51	1.7	136.3	3523.65	0	117.4	-5.86
		v_2	1069.31	206.6	5.8	1128.17	258.7	7.1	58.86
	Е	v_3	3681.02	11.8	89.4	3669.55	22	83.4	-11.47
		v_4	1665.35	29.0	18.4	1665.26	54.8	14.8	-0.09
VdW	А	v_1				232.50	43.5	0.4	
		v_2				225.74	43.8	0.5	
		v_3				110.19	0.9	0.1	
		v_4				14.90	2.1	0.8	
		v_5				12.98	2.4	0.3	

Table ST1 MP2/6-311++G(d,p) harmonic frequencies (v_i) in cm⁻¹, IR intensities (ε_i) in km mol⁻¹, Raman scattering activities (S_i) in Å⁴ amu⁻¹, for halothane, NH₃ and the 1:1 and 1:2 complexes of halothane with NH₃. The complexation shifts Δv_i in cm⁻¹, are also given.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2012

v_6	7.75	0.2	0.1	

			monomer		1:2 complex		
			v_{i}	ε_{i}	v_{i}	\mathcal{E}_{i}	Δv
halothane	А	v_1	3186.15	3.4	3076.36	245.5	-109.79
		v_2	1365.19	80.2	1409.43	43.2	44.24
		v_3	1305.88	197.2	1305.86	200.1	-0.02
		v_4	1258.91	15.3	1331.3	27.1	72.39
		v_5	1211.79	233.2	1210.54	217.52	-1.25
		v_6	1159.69	221.9	1175.85	249.45	16.16
		v_7	890.05	36.8	891.11	41.8	1.06
		v_8	848.46	74.6	843.22	83.4	-5.24
		v_9	737.45	19.1	733.78	25.2	-3.67
		v_{10}	676.66	27.0	677.21	37.06	0.55
		v_{11}	560.92	4.3	560.39	4.9	-0.53
		v_{12}	525.56	5.0	526.51	8.2	0.95
		v_{13}	374.75	0.5	374.58	0.2	-0.17
		v_{14}	320.25	0.6	320	2.3	-0.25
		v_{15}	238.81	0.4	242	1.6	3.19
		v_{16}	207.49	0.7	207.37	3.1	-0.12
		v_{17}	164.31	1.0	164.72	0.9	0.41
		v_{18}	78.00	0.0	79.86	0.1	1.86
NH ₃ (CH bonded)	А	v_1	3529.51	1.7	3478.08	74	-51.43
		v_2	1069.31	206.6	1154	232.7	84.69
	Е	v_3	3681.02	11.8	3625.38	62.2	-55.64
		v_3	3681.02	11.8	3670.44	7.4	-10.58
		v_4	1665.35	29.0	1662.2	19.2	-3.15
		v_4	1665.35	29.0	1693.24	10	27.89
NH ₃ (NH bonded)	А	v_1	3529.51	1.7	3522.02	1.7	-7.49
		v_2	1069.31	206.6	1129.63	189.1	60.32
	Е	v_3	3681.02	11.8	3664.75	7.7	-16.27
		v_3	3681.02	11.8	3670.79	9.3	-10.23
		v_4	1665.35	29.0	1660.21	41.5	-5.14
		v_4	1665.35	29.0	1666.2	34.6	0.85
VdW	А	v_1			445.21	62.3	
		v_2			297.29	67.2	

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

v_3	210.63	1.4
v_4	194.67	105.5
<i>v</i> ₅	143.08	16.9
v_6	142.16	1.2
v_7	120.73	5.6
v_8	48.93	1.0
v_9	40.07	0.0
v_{10}	30.77	0.8
v_{11}	28.36	0.3
V ₁₂	23.14	0.1