Hydrogen bond dynamics in the excited states: Photodissociation and ionization of phenol in clusters

Viktoriya Poterya,^a Lukáš Šištík,^b Petr Slavíček,^{a,b} Michal Fárník*^b

^a J. Heyrovský Institute of Physical Chemistry v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic

^b Department of Physical Chemistry, Institute of Chemical Technology, Technická 5, 16628 Prague 6, Czech Republic

Supporting Information

Cartesian coordinates (in Ångströms) of phenol monomer. The structure was optimized at the MP2/aug-cc-pVDZ level.

C 0.064351 0.00000 -0.064270
C 0.015638 0.00000 1.328295
C 1.200609 0.00000 2.057730
C 2.434686 0.00000 1.407751
C 2.474541 0.00000 0.015592
C 1.292619 0.00000 -0.723168
O -1.132005 0.00000 -0.731463
H -0.948496 0.00000 1.818564
H 1.157344 0.00000 3.138991
H 3.352588 0.00000 1.979171
H 3.424569 0.00000 -0.502489
H 1.325459 0.00000 -1.806952
H -0.956455 0.00000 -1.679337

Cartesian coordinates (in Ångströms) of phenol dimer. The structure was optimized at the MP2/aug-cc-pVDZ level.

C 1.523964 0.540321 0.103083 C 0.948931 -0.215557 1.138481 C 0.450376 0.452841 2.270106 C 0.523312 1.855483 2.369064 C 1.101917 2.595993 1.322565 С 1.604406 1.940417 0.182817 0 2.012322 -0.160414 -1.000397 H 0.897881 -1.304024 1.054586 H 0.000913 -0.132141 3.077527 H 0.132689 2.366711 3.252874 H 1.164150 3.686107 1.386200 H 2.054810 2.515684 -0.633763 H 2.357246 0.476120 -1.644288 C 0.527320 -3.287384 -0.654357 С 1.828071 -3.408373 -0.120598 C 2.128705 -4.474275 0.748663 C 1.145719 -5.423640 1.082640 C -0.147238 -5.299553 0.537279 C -0.461097 -4.234709 -0.324554 0 0.166279 -2.267485 -1.502494 H 2.594663 -2.674057 -0.386677 H 3.138754 -4.561196 1.160470 H 1.384012 -6.251460 1.756010 H -0.920113 -6.032432 0.788052 H -1.461812 -4.122591 -0.750632 H 0.866155 -1.587712 -1.489080 Cartesian coordinates (in Ångströms) of phenol trimer. The structure was optimized at the MP2/aug-cc-pVDZ level.

O 0.151600 0.388084 -0.358970 O -0.561584 0.489792 2.461093 O 2.239642 0.339815 1.667919 C -0.344690 -0.861773 -0.696487 C -0.707169 -0.755335 3.053155 С 2.719865 -0.949729 1.497511 C -0.315362 -0.846499 4.402515 C -0.326953 -2.097664 5.044628 C -0.733572 -3.252484 4.346791 C -1.157900 -3.139111 3.009384 C -1.157212 -1.892513 2.356086 H 0.016010 0.057414 4.921846 H -0.007505 -2.169693 6.088158 H -0.730838 -4.225844 4.844788 H -1.488885 -4.024113 2.457910 H -1.481191 -1.818131 1.315286 3.684304 -1.120036 0.485970 С С 4.139821 -2.413368 0.173581 C 3.641209 -3.531766 0.871053 2.704995 -3.341398 1.904893 С С 2.244583 -2.052325 2.232099 H 4.044738 -0.242091 -0.057959 4.877399 -2.546082 -0.623012 н Н 3.988496 -4.537311 0.618649 H 2.318019 -4.198166 2.464448 H 1.511145 -1.917667 3.030658 С 0.431197 -2.035539 -0.656247 C -0.190622 -3.274781 -0.897850 C -1.564864 -3.346146 -1.194392 C -2.318911 -2.158284 -1.273538 C -1.711925 -0.913536 -1.028656 H 1.496723 -1.993269 -0.418246 H 0.411342 -4.186811 -0.845505 H -2.041646 -4.313537 -1.374056 H -3.384643 -2.198624 -1.515994 H -2.285490 0.017175 -1.065576 1.466777 Н 0.337986 2.266023 Н 1.050521 0.306462 0.016080 H -0.690176 0.423073 1.494462 Cartesian coordinates (in Ångströms) of a phenol dimer minimum with a transferred hydrogen atom. The structure was optimized at the SA5-CASSCF(8/10)/6-31+g* level.

C 0.015591 0.234993 0.095941 C 0.147145 0.466751 1.453831 C 0.100268 1.768006 1.924117 C -0.081256 2.826936 1.050346 C -0.207754 2.569490 -0.308737 C -0.151793 1.276820 -0.795375 C -0.786277 -3.425390 2.050287 C -1.571177 -4.039292 3.093879 C -0.968515 -4.811321 4.074965 C 0.418116 -5.033431 4.050048 C 1.199417 -4.468413 3.005822 C 0.637744 -3.697940 2.045811 0 0.095132 -1.065032 -0.376721 0 -1.325980 -2.663317 1.210960 H 0.300768 -0.356708 2.125913 H 0.206962 1.949151 2.978190 H -0.129419 3.834919 1.419637 H -0.339404 3.383784 -0.998372 H -0.243078 1.080232 -1.845198 H -0.035167 -1.287351 -1.615865 H -2.627976 -3.849978 3.098433 H -1.563495 -5.245838 4.857683 H 0.886487 -5.640429 4.802484 H 2.256638 -4.663236 2.983548 H 1.224355 -3.287167 1.244230 H -0.450378 -1.712949 0.125785 Cartesian coordinates (in Ångströms) of the $\pi\pi^*/S_0$ conical intersection for phenol monomer. Coordinates of two alternative structures with distorted benzene ring are shown. The structures were optimized at the SA4-CASSCF(4/5)/6-31+g* level.

CII

С	0.161658	-0.013683	0.163847
С	0.054849	-0.165714	1.581029
С	1.243477	-0.032058	2.228054
С	2.437897	-0.036320	1.393155
С	1.453566	0.135930	-0.467954
С	2.440305	-0.742613	0.110648
Н	3.239829	0.655296	1.610120
Н	1.317868	0.072670	3.291290
Н	-0.895903	-0.297791	2.056846
Н	1.578909	0.762341	-1.339142
Н	3.027910	-1.554830	-0.267478
Н	-0.810914	-0.095963	-1.470828
0	-0.978041	0.018083	-0.545556

CI2

С	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.463706
С	0.000000	1.250889	2.076618
С	0.202251	2.281178	1.216383
С	0.343574	1.896481	-0.208135
С	-0.714928	1.021820	-0.707008
0	0.422459	-1.154861	-0.587225
Н	-0.020230	-0.939893	1.975313
Н	-0.162652	1.366108	3.133429
Н	0.199493	3.313649	1.507663
Н	1.085413	2.352101	-0.843885
Н	-0.962189	0.934827	-1.749485
Н	-0.243426	-1.438042	-1.201756

Cartesian coordinates (in Ångströms) of the $\pi\pi^*/S_0$ conical intersection for phenol dimer. The structures were optimized at the SA5-CASSCF(8/10)/6-31+g* level.

CI with ring-distorted donor phenol

С	0.095372	-0.212477	0.108186
С	0.057452	0.086911	1.462492
С	1.294018	-0.065053	2.076485
С	2.313447	-0.711865	1.272319
С	2.039217	-1.765767	0.345908
С	1.335802	-0.775066	-0.419854
С	-0.402115	1.475984	-3.921143
С	0.297608	2.365440	-3.111872
С	0.685305	3.589809	-3.618650
С	0.369999	3.946090	-4.927343
С	-0.341123	3.061926	-5.719572
С	-0.732267	1.821523	-5.223069
0	-0.974091	0.094419	-0.640538
0	-0.733179	0.259790	-3.397784
Н	-0.818786	0.483132	1.932225
Н	1.499375	0.333028	3.049847
Н	3.344255	-0.431870	1.446775
Н	2.865495	-2.283674	-0.095681
Н	1.666958	-0.487090	-1.416287
н	-0.846193	-0.054217	-1.567689
н	0.526787	2.103463	-2.097438
н	1.233394	4.267329	-2.986825
н	0.676924	4.898245	-5.305442
н	-0.594137	3.323640	-6.727609
н	-1.280816	1.129388	-5.838001
Н	-1.247316	-0.250187	-4.006550

Cartesian coordinates (in Ångströms) of the $\pi\pi^*/S_0$ conical intersection for phenol dimer. The structures were optimized at the SA5-CASSCF(8/10)/6-31+g* level.

CI with ring-distorted acceptor phenol

С	0.132391	-0.019546	-0.173811
С	0.056324	0.068886	1.207878
С	1.299042	0.016899	1.823131
С	2.400650	-0.368318	0.946150
С	2.237256	-1.323045	-0.098713
С	1.435319	-0.328085	-0.748251
С	-3.534335	1.230908	2.134075
С	-3.647410	-0.153450	2.054205
С	-4.100704	-0.875332	3.157190
С	-4.451283	-0.230136	4.327494
С	-4.352467	1.160929	4.399662
С	-3.895379	1.892498	3.308505
0	-0.979668	0.240846	-0.915896
0	-3.076667	1.988245	1.104662
Н	-0.865653	0.217320	1.723492
Н	1.449745	0.305370	2.846699
Н	3.377092	0.056635	1.135306
Н	2.996892	-1.938915	-0.535326
Н	1.748293	0.165496	-1.665350
Н	-0.866320	0.006981	-1.824878
Н	-3.375811	-0.662432	1.145497
Н	-4.170283	-1.946419	3.086746
Н	-4.794333	-0.792732	5.177683
Н	-4.620972	1.675488	5.305229
Н	-3.803456	2.961960	3.352021
Н	-2.650596	1.461105	0.438969

Cut through potential energy surface of phenol monomer along O–H dissociation coordinate. All remaining degrees of freedom are kept frozen. The molecule keeps C_s symmetry for all geometries. Energies are calculated at the ADC(2)/6-61+g* level (top panel) and at the SA6-CASSCF(10/9)/CASPT2/6-31+g* level (bottom panel).

Potential energy curves along hydrogen dissociation (part **a**) and excited state hydrogen transfer (part **b**) reaction coordinate for phenol dimer. The energies were calculated at the SA5-CASSCF(8/10)/CASPT2/6-31+g* level. The minimum with a transferred hydrogen was optimized with the CASSCF method.

Interpolation curve between Franck-Condon point and ring-puckering $\pi\pi^*/S_0$ conical intersection CI1 calculated at the ADC(2) level (top panel) and at the SA4-CASSCF(4/7)/CASPT2/6-31+g* level (bottom panel).

Interpolation curve between Franck-Condon point and ring-puckering $\pi\pi^*/S_0$ conical intersection CI2 calculated at the ADC(2) level (top panel) and at the SA4-CASSCF(4/7)/CASPT2/6-31+g* level (bottom panel).

Two-step interpolation curve between Franck-Condon point and ring-puckering $\pi\pi^*/S_0$ conical intersection CI1 calculated at the ADC(2) level (top panel) and at the SA4-CASSCF(4/7)/CASPT2/6-31+g* (bottom panel). The intermediate structure is an optimized transition state separating the S₁ minimum and $\pi\pi^*/S_0$ intersection. The transition state optimization was performed at the TDDFT/BHandHLYP/6-31+g* level.

Two-step interpolation curve between Franck-Condon point and ring-puckering $\pi\pi^*/S_0$ conical intersection CI2 calculated at the ADC(2) level (top panel) and at the SA4-CASSCF(4/7)/CASPT2/6-31+g* (bottom panel). The intermediate structure is an optimized transition state separating the S₁ minimum and $\pi\pi^*/S_0$ intersection. The transition state optimization was performed at the TDDFT/BHandHLYP/6-31+g* level.

Two-step interpolation curve between Franck-Condon point and $\pi\pi^*/S_0$ conical intersection calculated at the ADC(2) level for phenol dimer with distorted H-bond donor molecule (analogical curve for phenol dimer with distorted H-bond acceptor molecule is presented in Fig. 4c in the main body of the text).