Modern battery electrolytes: Ion-ion interactions in Li⁺/Na⁺ conductors from *ab initio* calculations Electronic supplementary information

Erlendur Jónsson and Patrik Johansson

February 26th, 2012

 $\Delta E_{d_{Ii}}$ vs. $\Delta E_{d_{Na}}$

Figure 1: The ion-pair dissociation energies, $\Delta E_{d_{Li}}$ vs. $\Delta E_{d_{Na}}$, calculated with M06-2X/6-311+G* for the 53 anions. The numbers in the legend correspond to the grouping of the anions as described in the computational methodology section of the article.

Figure 2: The ion-pair dissociation energies, $\Delta E_{d_{Li}}$ vs. $\Delta E_{d_{Na}}$, calculated with BMK/6-311+G* for the 53 anions. The numbers in the legend correspond to the grouping of the anions as described in the computational methodology section of the article.

Figure 3: The ion-pair dissociation energies, $\Delta E_{d_{Li}}$ vs. $\Delta E_{d_{Na}}$, calculated with TPSSh/6-311+G* for the 53 anions. The numbers in the legend correspond to the grouping of the anions as described in the computational methodology section of the article.

Functional benchmarking

Figure 4: The deviation of the DFT functionals when benchmarked against the lithium ion-pair dissociation energy of G4MP2.

Figure 5: The deviation of the DFT functionals when benchmarked against the sodium ion-pair dissociation energy of G4MP2.

Chemical structures

