Supplementary Information

Computational study of ethanol adsorption and reaction over rutile TiO₂ (110) surface.

J.N. Muir, Y. Choi and H. Idriss*

			Ethanol	Dissociative			
	Dissociative	Ethoxide	Gas	Adsorption			
Ethoxide	Adsorption	Difference	Difference	Difference	Ethanol Gas	Ethoxide	Dissociated Adsorption
-18.8	-19.6				O8 2s	O8 2s, C7 2s	O8 2s, C7 2s
-12.9	-12.7	5.9	6.9	6.4	C2 2s, C7 2s	C2 2s C7 2p _z	C2 2s, C7 2s
						C7 2s, C2 2p _y , H3, H6,	C7 2s, C2 2s, O8 2pz, C7
-9.3	-9.1	9.5	10.5	9.8	C7 2s, C2 2s	C7 2p _z , O8 2s	2ру, С2 2ру, Н3, Н6
-6.0	-6.7	12.8	12.9	13.1	O8 2p _x , C7 2p _y , O8 2p _z	C7 2p _x , C2 2p _x	O8 2pz, C7 2px
						C7 2px, C 7 2p _y , H1, C2	C7 2p _x , H3, C7 2p _z , O8
-5.4	-5.4	13.4	14.2	13.4	C7 2p _z , C7 2p _y C2 2p _z , C2 2p _x	2p _y , O8 2p _x	$2p_x$
-4.4	-3.9	14.4	15.7	14.5	O8 2p _y , C7 2p _z , C2 2p _x , C2 2p _y	C2 2p _y , C7 2p _y , O8 2p _y	O8 2p _y , C7 2p _y , C7 2p _y
						C7 2p _x , C2 2p _x , H6, H3,	C2 2p _z , H1, C2 2p _y , H4,
-3.7	-3.4	15.2	16.2	15.6	C2 2p _y , C2 2p _z , H1	H5, H4 O2 2p _x	H5
-3.6	-2.8	15.2	16.8	15.8	C2 2p _z , C2 2p _x , H4, H5	O8 2pz, C7 2pz, O8 2s	C7 2p _x , O8 2p _x
-0.2	-2.1	18.7	17.5	17.7	$O2 2p_y O2 2p_x, C\overline{7} 2p_y$	O8 2py	O8 $2p_x$ (small O2 p_y)
-0.1	-0.4	18.7	19.2	18.2	O8 2p _z ,O8 2p _x	O8 2p _x	$O8 2p_y, O8 2p_x$

Table S1

Comparison of the orbitals of isolated ethanol and ethoxide (in the middle of the vacuum layer with a TiO_2 slab) and dissociatively adsorbed parallel ethanol. The difference columns list the energy difference between the current orbital and orbital 1 in eV. The makeup of orbitals lists the major components of the orbitals as determined by LDOS. The energetic separation and makeup of ethanol gas is somewhat between a gas and ethoxide structure though energetic separation is closer to an ethanol gas phase structure.

Figure S1

3D images of the integrated LDOS of ethanol, ethoxide, adsorbed ethoxide and ethanol as determined in Figures 8 and 9. All images are at 0.01 states/bohr³. Orbitals numbers refer to tables 3 and 4. For ethanol gas imaging the Cs configuration is used as it compares best with the adsorbed molecular configuration.

Figure S2

Close up of the Ti12 charge density difference with red as increased charge density and blue as decreased charge density.

Left) Dissociative parallel 0.008 e/bohr³;

Right) Molecular Perpendicular 0.004 e/bohr³.

Red is increase, blue is decrease in charge density.

		WF decrease (eV)) Refs						
	A) Oxygenates on TiO_2	(110)							
Experimental									
Water	Perfect	1.1, 1.2	(52, 64)						
	Reduced	0.6, 0.9	(52, 65)						
Formic Acid	Perfect	0.8	(66)						
Pivalic Acid	Perfect	0.8	(67)						
Methanol	Perfect	1.2	(68)						
Theoretical									
Formaldehyde	Perfect/Reduced	0.5	(47)						
Methanol	Perfect	1.6-2.7	(22)						
Ethanol (molecular)	Perfect	0.55	This work						
Ethanol (dissociative)	Perfect	0.28	This work						
B) Ethanol on Metals									
Ag (110)	Experimental.	1.1	(69)						
Mo ₂ C/Mo (110)	Experimental.	1.2	(70)						
Rh (111)	Theoretical	2.7	(71)						

Table S2

Literature decrease in work function of

A) TiO₂ with adsorbed oxygenates and B) Various metals with adsorbed ethanol.