Electronic Supplementary Information:

Insights into the effects of graphene oxide sheet on the conformation and activity of glucose oxidase: towards developing a nanomaterial-

based protein conformation assay

Qian Shao, Ping Wu, Xiaoqing Xu, Hui Zhang and Chenxin Cai*

Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China.

* Corresponding author, E-mail: <u>cxcai@njnu.edu.cn</u> (C. Cai); Tel: 86-25-85891780; Fax: 86-25-85891767.

1. XPS spectrum of GO

Fig. S1 (A) XPS spectrum of the prepared GO sheets; (B) is XPS spectra of C1s in GO and their related curve-fitted components.

2. FAD fluorescence emission spectra

Fig. S2 The FAD fluorescence emission spectra of native GOx (150 μ g mL⁻¹, a) and the GOx–GO bioconjugate system with GOx concentration fixed at 150 μ g mL⁻¹ and GO concentration of 2.5 (b), 5 (c), 10 (d), 20 (e), and 25 μ g mL⁻¹ (f) in 0.1 M PBS (pH 7.0). The excitation wavelength is 373 nm.

3. Fluorescence emission spectra of GO

Fig. S3 The fluorescence emission spectra of GO in PBS at a concentration of 1.25, 2.5, 5, 7.5, 10, 12.5, and 15 μ g mL⁻¹, respectively. The excitation wavelength is 279 nm.

4. CD spectra of the GOx–GO bioconjugate system at different interaction time

Fig. S4 Far–UV CD spectra of native GOx (300 μ g mL⁻¹, a) and GOx–GO bioconjugate system with GOx concentration at 300 μ g mL⁻¹ and GO concentration at 25 μ g mL⁻¹ in PBS (0.1 M, pH 7.0) for the interaction time of 4 (b), 12 (c), 24 (d), and 48 h (e), respectively.

5. CD spectra of native GOx and GOx–GO bioconjugate system at different solution pH

Fig. S5 Far–UV CD spectra of native GOx (300 μ g mL⁻¹, a) and GOx–GO bioconjugate system with the GOx concentration at 300 μ g mL⁻¹ and GO concentration at 25 μ g mL⁻¹ in PBS (0.1 M) at pH of 6.0 (A), 7.0 (B), and 8.0 (C), respectively.

6. CD spectra of native GOx at different ionic strength

Fig. S6 Far–UV CD spectra of native GOx (300 μ g mL⁻¹) in PBS (0.1 M, pH 7.0) under the presence of 0 (a), 0.5 (b), 1.0 (c), and 2.0 M NaCl (d), respectively.

Fig. S7 Relative amount of α -helix (A), β -sheet (B), β -turn (C), and random coil (D) of native GOx in PBS (0.1 M, pH 7.0) under the presence of 0 (a), 0.5 (b), 1.0 (c), and 2.0 M NaCl (d), respectively. The data were obtained from CD spectra presented in Fig. S6 using a CDNN program. The data represented here are obtained by averaging the five independent measurements (n = 5). The error bar represents the standard deviation.

7. Effects of ionic strength on the disperse ability of GO and the GOx–GO bioconjugates

Fig. S8 Pictures of GO (a–d) and GOx–GO bioconjugates (e–h) in PBS (0.1 M, pH 7.0) containing different concentration of NaCl. The concentration of NaCl is 0 (a, e), 0.5 (b, f), 1.0 (c, g), and 2.0 M (d, h). The concentration of GO in PBS is 25 μ g mL⁻¹. The GOx–GO bioconjugates were prepared with GOx at 300 μ g mL⁻¹ and GO at 25 μ g mL⁻¹.

8. Dependent of absorbance of the enzymatic system on reaction time

Fig. S9 Dependent of absorbance of oxidized form of *o*-dianisidine generating in the catalytic system at 436 nm on reaction time for native GOx (0.6 μ g mL⁻¹, a) and GOx–GO bioconjugate system with the concentrations of GO of 2.5 (b), 5 (c), and 25 μ g mL⁻¹ (d) in PBS (0.1 M, pH 7.0). The catalytic system contains 16.7 mg mL⁻¹ β –D–glucose, 8 μ g mL⁻¹ HRP, and 53 μ g mL⁻¹*o*-dianisidine. The volume of the system is 3.1 mL. Curve (e) displays the absorbance of the system with native GOx being replaced by GO (25 μ g mL⁻¹). The data represented here are obtained by averaging the five independent measurements (*n* = 5). The error bar represents the standard deviation.