Supporting Information

Nano-graphite Functionalized Mesocellular Carbon Foam with Enhanced Intra-penetrating Electrical Percolation Networks for High Performance Electrochemical Energy Storage Electrode Materials

Changshin Jo, \ddagger^a Sunhyung An, \ddagger^a Younghoon Kim,^b Jongmin Shim,^a Songhun Yoon,^{*,b} and Jinwoo Lee^{*,a}

^{*a*}Department of Chemical Engineering, Pohang University of Science and Technology, Hyo-ja dong, Pohang, Kyungbuk, 790-784, KOREA. ^{*b*}Green Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 305-600, KOREA, ‡ Both authors contributed equally to this work

E-mail address: jinwoo03@postech.ac.kr, yoonshun@krict.re.kr

Type of carbons	Surface area/	Capacitance /	Electrolyte	Reference
	m² g⁻¹	Fg⁻¹		
SOMC	1179	127 (at 5 mV	6 M	HQ. Li et al. J.
(Short pore length ordered	(3.9 nm pores)	s ⁻¹)	KOH	Electrochem. Soc.,
mesoporous carbon)				154, A731 (2007)
LOMC	1362	113 (at 5 mV	6 M	HQ. Li et al. J.
(Long pore length ordered	(3.8 nm pores)	s ⁻¹)	KOH	Electrochem. Soc.,
mesoporous carbon)				154, A731 (2007)
CMK-3	984	115 (at 2 mV	6 M	K. Xia et al. Carbon,
(Mesoporous carbon, 2-	(4 nm pores)	s ⁻¹)	KOH	46, 1718 (2008)
dimensional hexagonal structure)				
MSU-F-C	928	109 (at 4 mV	2 M	This work
(Mesocellular carbon)	(4 & 28nm pores)	s ⁻¹)	H_2SO_4	
MSU-F-C-G	394	93 (at 4 mV s	2 M	This work
(Graphite functionalized	(28 nm pores)	1)	H_2SO_4	
mesocellular carbon)				

Table S1. EDLC performance of various mesoporous carbon materials.

Table S2. Lithium ion battery anode performance of mesoporous carbon materials.

Type of carbons	Surface area/	Reversible	ΔV	Initial coulombic	Reference
	m² g-1	capacity /		efficiency / %	
		mAh g⁻¹		(ratio of	
				discharge/charge)	
Tir-OMC	2390	1048	0.01 - 3	34	HQ. Li et al.
(Mesoporous carbon, 2-	(6.7 nm pores)	(500 mAh g ⁻¹			<i>Carbon</i> 45, 2628
dimensional hexagonal		after 50			(2007)
structure)		cycles)			
CMK-3	1147	1100 - 850	0.01 - 3	34	H. Zhou et al.
(Mesoporous carbon, 2-	(4 nm pores)	in 20 cycles			Adv. Mater., 15,
dimensional hexagonal					2107 (2003)
structure)					
MSU-F-C	928	624	0 – 2.5	27.5	This work
(Mesocellular carbon)	(4 & 28nm	(99 %			
	pores)	retention after			
		50 cycles)			
MSU-F-C-G	394	581	0 – 2.5	43.6	This work
(Graphite functionalized	(28 nm pores)	(93 &			
mesocellular carbon)		retention after			
		50 cycles)			

Figure S1. SEM images of (a) MSU-F-C and (b) MSU-F-C-G. The particle shape did not change after functionalization of the nanographite on MSU-F-C.

Figure S2. TEM images of (a) MSU-F-C and (b)-(d) MSU-F-C-G.

Figure S3. Capacitance-voltage profiles of (a) MSU-F-C and (b) MSU-F-C-G obtained from cyclic voltammograms. The large time constant($\tau = \text{ESR} \times \text{C}$) of the MSU-F-C electrode distorts the rectangular shaped response of the current under high scan rate conditions. On the other hand, the enhanced electrical conductivity of the MSU-F-C-G material results in a better capacitance retention under high scan rate conditions.

Figure S4. Galvanostatic charge/discharge graphs of (a) MSU-F-C, and (b) MSU-F-C-G within the potential range, -0.2 to 0.8V for various current rates $(1 - 50 \text{ mA/cm}^{-2})$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2012

Figure S5. Nyquist plots of MSU-F-C and MSU-F-C-G at 0.2 V. (Inset : magnified view.)

Figure S6. Change of the galvanostatic charge-discharge patterns of the (a) MSUF-F-C and (b) MSU-F-C-G anodes according to an applied current of 0.1 (solid), 0.2 (dashed), 0.5 (dotted), 1 (dash-dotted) and 2 C (short-dashed).

Figure S7. Electrochemical impedance spectra of the MSU-F-C (rectangles) and MSU-F-C-G (circles) anodes expressed as Nyquist plots according to measuring potentials of (a) 0, (b) 0.5, (c) 1.0 and (d) 2.0 V vs. Li/Li⁺.