Electronic Supplementary Information

Amide-induced phase separation of hexafluoroisopropanol–water mixtures depending on the hydrophobicity of amide

Toshiyuki Takamuku,^{*,a} Hiroshi Wada,^a Chiemi Kawatoko,^a Takuya Shimomura,^a Ryo Kanzaki^b and Munetaka Takeuchi^c

^a Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan; E-mail: takamut@cc.saga-u.ac.jp.

^b Graduate School of Science and Engineering, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan

^c Fujitsu Limited, Nakase 1-chome, Mihama-ku, Chiba 269-8588, Japan

Table S1	Compositions	of amide	e–HFIP–D ₂ O	mixtures	for	SANS	measurements	and	their	Ornstein-	Zernike	correlation
lengths ξ o	determined by S	SANS me	asurements at	298 K. ^a								

Sample	x _A	$x_{ m HFIP}$	x _{Water}	$x^{\rm S}_{\rm HFIP}$	$x_{\rm A}/x^{\rm L}_{\rm A,298}$	$x_{\rm A}/x^{\rm U}_{\rm A,298}$	ξ/Å
				NMF			
F0 _S	0	0.147	0.853	0.147	0		4.8(1)
F1 _s	0.00770	0.146	0.846	0.147	35		6.8(1)
F2 _S	0.0132	0.145	0.842	0.147	60		9.4(1)
F3 _s	0.0175	0.145	0.838	0.147	80		12.2(1)
F4 _S	0.0198	0.144	0.836	0.147	90		15.1(1)
F5 _s	0.199	0.118	0.683	0.147		103	29.2(1)
F6 _s	0.204	0.117	0.679	0.147		106	22.7(1)
F7 _s	0.212	0.116	0.672	0.147		110	17.3(1)
F8 _s	0.222	0.115	0.663	0.147		115	14.1(1)
F9 _s	0.232	0.113	0.655	0.147		120	11.8(1)
				NMA			
$A0_S$	0	0.147	0.853	0.147	0		4.8(1)
A1 _s	0.00520	0.147	0.848	0.147	35		7.0(1)
A2 _S	0.00900	0.146	0.845	0.147	60		9.8(1)
A3 _s	0.0120	0.146	0.843	0.147	80		13.6(1)
A4 _s	0.0135	0.145	0.841	0.147	90		16.8(1)
A5 _s	0.248	0.111	0.641	0.147		103	29.8(1)
A6 _S	0.256	0.110	0.635	0.147		107	21.3(1)
A7 _S	0.265	0.108	0.627	0.147		110	17.1(1)
A8 _S	0.277	0.107	0.617	0.147		115	13.4(1)
A9 _S	0.289	0.105	0.606	0.147		120	
				NMP			
P0 _s	0	0.147	0.853	0.147	0		4.8(1)
P1 _s	0.00440	0.147	0.849	0.147	35		7.3(1)
P2 _s	0.00750	0.146	0.846	0.147	60		10.1(1)
P3 _s	0.0100	0.146	0.844	0.147	80		12.7(1)
P4 _S	0.0113	0.146	0.843	0.147	90		18.2(1)
P5 _s	0.294	0.104	0.602	0.147		103	19.1(1)
P6 _S	0.303	0.103	0.594	0.147		106	13.3(1)
P7 _S	0.315	0.101	0.584	0.147		110	12.2(1)
P8 _S	0.328	0.0989	0.573	0.147		115	10.6(1)
P9 _s	0.343	0.0967	0.560	0.147		120	

 ${}^{a}x^{S}_{HFIP}$ gives the HFIP mole fractions of HFIP-water binary solvent. $x_{A}/x^{L}_{A,298}$ and $x_{A}/x^{U}_{A,298}$ represent the ratios of amide mole fraction to the lower and upper phase separation mole fractions, respectively, in percent figures. The phase separation mole fractions $x^{L}_{A,298}$ and $x^{U}_{A,298}$ are listed in Table 2. The values in the parentheses are standard deviations.

Sample	x _A	<i>x</i> _{HFIP}	x _{Water}	$x^{\rm S}_{\rm HFIP}$	$x_{\rm A}/x_{\rm A,298}^{\rm L}$	$x_{\rm A}/x^{\rm U}_{\rm A,298}$
			NMF			
$F1_N$	0.00832	0.146	0.846	0.147	34	
$F2_N$	0.0139	0.145	0.841	0.147	57	
$F3_N$	0.0210	0.144	0.835	0.147	87	
$F4_N$	0.0235	0.144	0.833	0.147	97	
$F5_N$	0.195	0.118	0.687	0.147		103
F6 _N	0.197	0.118	0.685	0.147		104
$F7_N$	0.207	0.117	0.676	0.147		110
$F8_N$	0.218	0.115	0.667	0.147		115
$F9_N$	0.237	0.112	0.651	0.147		125
			NMA			
$A1_N$	0.00550	0.146	0.848	0.147	34	
$A2_N$	0.00902	0.146	0.845	0.147	55	
$A3_N$	0.0136	0.145	0.841	0.147	83	
$A4_N$	0.0155	0.145	0.840	0.147	95	
$A5_N$	0.252	0.110	0.638	0.147		105
$A6_N$	0.257	0.109	0.634	0.147		107
$A7_N$	0.266	0.108	0.626	0.147		111
$A8_{\rm N}$	0.278	0.106	0.616	0.147		116
$A9_{\rm N}$	0.302	0.103	0.595	0.147		126
			NMP			
$P1_N$	0.00388	0.146	0.850	0.147	28	
P2 _N	0.00657	0.146	0.847	0.147	54	
$P3_N$	0.00972	0.146	0.845	0.147	80	
$P4_N$	0.0111	0.145	0.844	0.147	91	
$P5_N$	0.298	0.103	0.599	0.147		105
$P6_N$	0.303	0.102	0.594	0.147		106
$P7_N$	0.309	0.102	0.590	0.147		108
P8 _N	0.324	0.0993	0.576	0.147		114
P9 _N	0.357	0.0946	0.549	0.147		125

Table S2 Compositions of amide-HFIP-H₂O mixtures for NMR measurements.

Table S3 Intramolecular atom–atom bond lengths and notation of the atoms in NMF, NMA, and NMP and the potential parameters used for the MD simulations.

Intramolecu	ular Atom–Ator	m Bond Lengths	
Molecule	Bond	r / Å	
NMF	C1-H11	1.090	H11 H13
	C1-H12	1.090	
	C1-H13	1.090	
	C1-N	1.449	
	HA–N	1.010	N C
	C–N	1.335	
	С–Н	1.080	Н
	С–О	1.229	па

Bond Angle Potentials

Molecule	Angle	K_{θ} / kcal mol ⁻¹ rad ⁻²	$ heta_0$ / deg	
NMF	Н11-С1-Н12	35	109.5	
	H11-C1-H13	35	109.5	
	H12-C1-H13	35	109.5	
	H11-C1-N	38	109.5	
	H12-C1-N	38	109.5	
	H13-C1-N	38	109.5	
	C1-N-HA	38	118.4	
	С1-N-С	50	121.9	
	НА-N-С	35	119.8	
	N-C-O	80	122.9	
	N–С–Н	35	119.1	
	Н–С–О	80	122.9	

(Cont.)

Torsion Po	tentials				
Molecule	Torsion	$V_{\rm n}/2$ / kcal mol ⁻¹	n	ϕ_0 / deg	
NMF	H11-C1-N-HA	0	3	0	
	H12-C1-N-HA	0	3	0	
	H13-C1-N-HA	0	3	0	
	H11-C1-N-C	0	3	0	
	H12-C1-N-C	0	3	0	
	H13-C1-N-C	0	3	0	
	C1-N-C-O	10	2	180	
	НА-N-С-О	10	2	180	
	С1-N-С-Н	10	2	180	
	НА-N-С-Н	10	2	180	

van der Waals Parameters and Point Charges

Molecule	Atom	σ / Å	ϵ / kcal mol ⁻¹	<i>q</i> / e
NMF	C1	3.500	0.066	0.020
	HA	0.000	0.000	0.300
	Ν	3.250	0.170	-0.500
	С	3.750	0.105	0.500
	0	2.960	0.210	-0.500
	H11	2.500	0.030	0.060
	H12	2.500	0.030	0.060
	H13	2.500	0.030	0.060
	Н	2.420	0.015	0.000

(Cont.)
(/

Intramolect	ular Atom–Aton	n Bond Lengths	
Molecule	Bond	r / Å	
NMA	C1-H11	1.090	H11 - H12
	С1-Н12	1.090	HI3
	С1-Н13	1.090	H12 C1
	C1–N	1.449	
	HA–N	1.010	N C
	C–N	1.335	Н23
	С-О	1.229	HA H22 C2
	С-С2	1.522	
	C2-H21	1.090	H21
	С2-Н22	1.090	
	С2-Н23	1.090	

Bond Angle Potentials

Molecule	Angle	K_{θ} / kcal mol ⁻¹ rad ⁻²	$ heta_0$ / deg	
NMA	Н11-С1-Н12	35	109.5	
	H11-C1-H13	35	109.5	
	H12-C1-H13	35	109.5	
	H11-C1-N	38	109.5	
	H12-C1-N	38	109.5	
	H13-C1-N	38	109.5	
	C1–N–HA	38	118.4	
	C1-N-C	50	121.9	
	НА-N-С	35	119.8	
	N-C-O	80	122.9	
	N-C-C2	70	116.6	

(Cont.)

С2-С-О	87	120.4
Н22-С2-Н23	35	109.5
Н21-С2-Н23	35	109.5
H21-C2-H22	35	109.5
С-С2-Н23	35	109.5
С-С2-Н22	35	109.5
С-С2-Н21	35	109.5

Torsion Potentials

Molecule	Torsion	$V_{\rm n}/2$ / kcal mol ⁻¹	n	ϕ_0 / deg	
NMA	H11-C1-N-HA	0	3	0	
	H12-C1-N-HA	0	3	0	
	H13-C1-N-HA	0	3	0	
	H11-C1-N-C	0	3	0	
	H12-C1-N-C	0	3	0	
	H13-C1-N-C	0	3	0	
	C1-N-C-O	10	2	180	
	HA-N-C-O	10	2	180	
	C1-N-C-C2	10	2	180	
	HA-N-C-C2	10	2	180	
	N-C-C2-H21	0	2	0	
	N-C-C2-H22	0	2	0	
	N-C-C2-H23	0	2	0	
	O-C-C2-H21	0	2	0	
	О-С-С2-Н22	0	2	0	
	О-С-С2-Н23	0	2	0	

(Cont.)

van der Waa	als Parameter	rs and Point Charges		
Molecule	Atom	σ / Å	ϵ / kcal mol ⁻¹	<i>q</i> / e
NMA	C1	3.500	0.066	0.020
	C2	3.500	0.066	-0.180
	HA	0.000	0.000	0.300
	Ν	3.250	0.170	-0.500
	С	3.750	0.105	0.500
	0	2.960	0.210	-0.500
	H11	2.500	0.030	0.060
	H12	2.500	0.030	0.060
	H13	2.500	0.030	0.060
	H21	2.500	0.030	0.060
	H22	2.500	0.030	0.060
	H23	2.500	0.030	0.060

(Cont.)
(/

Intramolecu	ular Atom–Aton	n Bond Lengths	
Molecule	Bond	<i>r</i> / Å	
NMP	C1-H11	1.090	H11 H12
	С1-Н12	1.090	
	С1-Н13	1.090	H12 C1 0
	C1–N	1.449	
	HA–N	1.010	N C H31
	C–N	1.335	Н32
	С-О	1.229	HA H22 C2 C3
	С-С2	1.522	НЗЗ
	C2–C3	1.526	H21
	С2-Н21	1.090	
	С2-Н22	1.090	
	С3-Н31	1.090	
	С3-Н32	1.090	
	С3-Н33	1.090	

Bond Angle Potentials

Molecule	Angle	K_{θ} / kcal mol ⁻¹ rad ⁻²	θ_0 / deg	
NMP	H11-C1-H12	35	109.5	
	H11-C1-H13	35	109.5	
	H12-C1-H13	35	109.5	
	H11-C1-N	38	109.5	
	H12-C1-N	38	109.5	
	H13-C1-N	38	109.5	
	C1–N–HA	38	118.4	
	C1-N-C	50	121.9	
	HA–N–C	35	119.8	

(Cont.)

80	122.9
70	116.6
35	109.5
35	109.5
63	111.1
35	109.5
35	109.5
35	109.5
35	109.5
35	109.5
35	109.5
35	109.5
35	109.5
35	109.5
87	120.4
	80 70 35 35 35 35 35 35 35 35 35 35 35 35 35

Torsion Potentials

Molecule	Torsion	$V_{\rm n}/2$ / kcal mol ⁻¹	п	ϕ_0 / deg	
NMP	H11-C1-N-HA	0	3	0	
	H12-C1-N-HA	0	3	0	
	H13-C1-N-HA	0	3	0	
	H11-C1-N-C	0	3	0	
	H12-C1-N-C	0	3	0	
	H13-C1-N-C	0	3	0	
	C1-N-C-O	10	2	180	
	НА-N-С-О	10	2	180	
	C1-N-C-C2	10	2	180	
	НА-N-С-С2	10	2	180	

(Cont.)

N-C-C2-C3	0	2	0
N-C-C2-H21	0	2	0
N-C-C2-H22	0	2	0
О-С-С2-Н21	0	2	0
О-С-С2-Н22	0	2	0
О-С-С2-С3	0	2	0
H21-C2-C3-H31	1.3	3	0
H21-C2-C3-H32	1.3	3	0
Н21-С2-С3-Н33	1.3	3	0
H22-C2-C3-H31	1.3	3	0
Н22-С2-С3-Н32	1.3	3	0
Н22-С2-С3-Н33	1.3	3	0
С-С2-С3-Н31	1.3	3	0
С-С2-С3-Н32	1.3	3	0
С-С2-С3-Н33	1.3	3	0

van der Waals Parameters and Point Charges

Molecule	Atom	σ / Å	ϵ / kcal mol ⁻¹	<i>q</i> / e
NMP	C1	3.500	0.066	0.020
	C2	3.500	0.066	-0.120
	C3	3.500	0.066	-0.180
	HA	0.000	0.000	0.300
	Ν	3.250	0.170	-0.500
	С	3.750	0.105	0.500
	0	2.960	0.210	-0.500
	H11	2.500	0.030	0.060
	H12	2.500	0.030	0.060
	H13	2.500	0.030	0.060

H21	2.500	0.030	0.060	
H22	2.500	0.030	0.060	
H31	2.500	0.030	0.060	
H32	2.500	0.030	0.060	
 H33	2.500	0.030	0.060	

Fig. S2 Phase diagrams of amide–HFIP–water ternary systems at 298.2 \pm 0.3 K as a function of mole fractions of amide, x_A , HFIP, x_{HFIP} , and water, x_{H2O} : (a) NMF, (b) NMA, and (c) NMP systems. Compositions of the systems examined are indicated by opened circles (miscible) and filled ones (immiscible). The solid line gives the border between one-phase and two-phase states. The red arrows indicate the variation in the compositions of sample solutions examined by SANS, NMR, and MD.

Fig. S3 Temperature dependence of phase diagrams of (a) NMF–HFIP–H₂O and (b) NMA–HFIP–H₂O systems.

Fig. S4 SANS intensities of NMA–HFIP–D₂O (upper) and NMP–HFIP–D₂O (lower) mixtures: the left panels show the intensities of the mixtures below the $x_{A,298}^{L}$, and the right ones indicate those above the $x_{A,298}^{U}$. The circles are the observed values and the solid lines are the theoretical ones obtained from the Ornstein–Zernike fits using a least-squares refinement procedure. The values in the right panels indicate the intensities shifted from the origin to avoid overlap of the plots. The arrows show the increase in the amide concentration.

Fig. S6 SANS intensities of amide–HFIP– D_2O mixtures (NMF: upper; NMA: middle; NMP: bottom) as a function of temperature. The left and right panels show the intensities of the NMF systems of F2_s and F6_s, the NMA ones of A2_s and A6_s, and the NMP ones of P2_s and P6_s, respectively. The circles are the observed values, and the solid lines are the theoretical ones obtained from the Ornstein–Zernike fits using a least-squares refinement procedure. The values in the figures indicate the intensities shifted from the origin to avoid overlap of the plots. The arrows show the rise in temperature.

Fig. S7 ¹H and ¹³C NMR spectra of upper and lower phases separated from NMF–HFIP–H₂O (upper) and NMA–HFIP–H₂O (lower) systems at 298 K.

Fig. S8 ¹H chemical shifts of amide molecules in NMF–HFIP–H₂O (left, $F1_N$ – $F4_N$ and $F5_N$ – $F9_N$) and NMA–HFIP–H₂O (right, $A1_N$ – $A4_N$ and $A5_N$ – $A9_N$) mixtures at 288 (blue circles), 298 (green ones), and 308 K (red ones) as a function of the ratio of amide mole fraction to the phase separation one at each temperature. The standard deviations are shown by error bars.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Fig. S9 ¹³C chemical shifts of amide molecules in NMF–HFIP–H₂O (left, $F1_N$ – $F4_N$ and $F5_N$ – $F9_N$) and NMA–HFIP–H₂O (right, $A1_N$ – $A4_N$ and $A5_N$ – $A9_N$) mixtures at 288 (blue circles), 298 (green ones), and 308 K (red ones) as a function of the ratio of amide mole fraction to the phase separation one at each temperature. The standard deviations are shown by error bars.

Fig. S10 Intermolecular atom–atom pair correlation functions g(r) for O_A–H_W interaction between the amide carbonyl oxygen and water hydroxyl hydrogen atoms (left) and NH_A–O_W interaction between the amide amino hydrogen and water oxygen atoms (right) obtained from MD simulations on amide–water systems (black line), amide–HFIP–water systems below the $x^{L}_{A,298}$ (blue one) and above the $x^{U}_{A,298}$ (yellow one). The upper and lower panels show the g(r) of the NMF and NMA systems, respectively.

Fig. S12 Intermolecular atom-atom pair correlation functions g(r) for C_A-C_{HFIP} interaction between the amide carbon and HFIP carbon atoms and C_A-F_{HFIP} interaction between the amide carbon and HFIP fluorine atoms obtained from MD simulations on amide-HFIP-water systems. The colors of lines are the same as those used in Fig. S10. The upper and lower panels show the g(r) of the NMF and NMA systems, respectively.

Fig. S13 Intermolecular atom–atom pair correlation functions g(r) for O_A-H_{HFIP} interaction between the amide carbonyl oxygen and HFIP hydroxyl hydrogen atoms obtained from MD simulations on amide–HFIP–water mixtures below the $x_{A,298}^{L}$ (blue) and above the $x_{A,298}^{U}$ (yellow). The left, center, and right panels show the g(r) of the NMF, NMA, and NMP systems, respectively.

Fig. S14 Intermolecular atom–atom pair correlation functions g(r) for NH_A–O_{HFIP} interaction between the amide amino hydrogen and HFIP hydroxyl oxygen atoms obtained from MD simulations on amide–HFIP–water mixtures below the $x^{L}_{A,298}$ (blue) and above the $x^{U}_{A,298}$ (yellow). The left, center, and right panels show the g(r) of the NMF, NMA, and NMP systems, respectively.

Fig. S15 Numbers of hydrogen bonds for (a) O_A-H_{HFIP} and (b) NH_A-O_{HFIP} estimated from MD g(r). The blue and yellow columns represent those for amide–HFIP–water systems below the $x_{A,298}^L$ and above the $x_{A,298}^U$, respectively.