Supporting Information for:

On the possible catalysis by single water molecules of gas-phase hydrogen abstraction reactions by OH radicals

Ditte Linde Thomsen^a, Theo Kurtén^b, Solvejg Jørgensen^a, Timothy J. Wallington^c, Signe Bang Baggesen^a, Cecilie Aalling^a,

and Henrik G. Kjaergaarda*

^a Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.

^b Laboratory of Physical Chemistry, Department of Chemistry, P.O. BOX 55, FI-00014 University of Helsinki, Finland

^c Systems Analytics and Environmental Sciences Department, Ford Motor Company, Mail Drop RIC-2122, Dearborn, Michigan 48121-2053, USA

*Corresponding author:

Email: hgk @ chem.ku.dk

FAX: 45-35320322

Phone: 45-35320334

		$\Delta \mathrm{E}_{\mathrm{TS}}$						
	B3LYP	CCSD(T)-F12	CBS-QB3					
CH ₄	2.3	6.7	4.1					
CF ₃ H	0.0	4.9	3.2					
CH ₃ OH	-2.3	-1.4	0.9					
CH ₃ NH ₂	-2.8	-0.4	1.1					

Tabel S1: Electronic energy without ZPVE of the transistion state in the absence of water calculated in kcal/mol with respect to isolated reactants. Calculated with B3LYP/aug-cc-pVTZ and CCSD(T)-F12/VDZ-F12a on B3LYP/AVTZ optimized geometries, and with the composite CBS-QB3 method.

		$\Delta\Delta G_{TS}$	
	298 K	200 K	100 K
CH ₄	-	-	-
CFH ₃	-0.4	-0.9	-2.0
(CH ₃) ₂ CFH	0.8	-0.1	-0.9
CF ₃ H	-	-	-
CH ₃ OH	1.4	0.4	-0.5
(CH ₃) ₂ CHOH	-0.9	-1.5	-2.1
F ₂ CHOH	2.1	1.3	0.5
CH ₃ NH ₂	0.8	0.0	-0.8
(CH ₃) ₂ CHNH2	-0.6	-1.3	-1.9
F ₂ CHNH ₂	-0.9	-1.9	-2.9
CH₃CHO	-2.0	-2.7	-3.2

Table S2: Temperature dependence of the change in Gibbs free energy ($\Delta\Delta G_{TS}$, in kcal/mol) of the transition state between hydrated and non-hydrated reactions ($\Delta\Delta G_{TS} = \Delta G_{TS,H2O}$ - ΔG_{TS}). Calculated with respect to the energy of RH···H₂O + OH for the hydrated reaction and relative to the isolated reactants for the non-hydrated reaction. Calculated with the CCSD(T)-F12a/cc-pVDZ-F12 electronic energies at the B3LYP/aug-cc-pVTZ structures and the B3LYP/ aug-cc-pVTZ thermodynamic corrections.

Tables of Energetics of all reactants, water adducts, reaction complexes and transition states

Reactants

		B3LYP					
	E _{B3LYP}	ZPVE _{B3LYP}	H _{B3LYP}	G_{B3LYP}	S^2	E _{CCSD(T)-F12}	T1
CH ₄	-40.53842	0.04455	-40.49007	-40.51250	-	-40.45303	0.009
CH ₃ F	-139.80443	0.03907	-139.76150	-139.78679	_	-139.60834	0.009
(CH ₃) ₂ CHF	-218.47458	0.09539	-218.37316	-218.40647	-	-218.12748	0.010
CF ₃ H	-338.38137	0.02498	-338.35197	-338.38252	-	-337.96880	0.011
CH₃OH	-115.77676	0.05106	-115.72141	-115.74847	_	-115.59412	0.009
(CH ₃) ₂ CHOH	-194.44282	0.10735	-194.32899	-194.36296	-	-194.11072	0.010
CF ₂ HOH	-314.35508	0.03663	-314.31340	-314.34507	-	-313.95491	0.011
CH ₃ NH ₂	-95.90341	0.06372	-95.83529	-95.86263	-	-95.73312	0.009
(CH ₃) ₂ CH NH ₂	-174.56612	0.12018	-174.43940	-174.47344	-	-174.24740	0.009
CF ₂ HNH ₂	-294.48037	0.04933	-294.42592	-294.45760	-	-294.09107	0.011
CH₃CHO	-153.89642	0.055201	-153.836377	-153.86616	-	-153.64020	0.014
ОН	-75.768599	0.008418	-75.756877	-75.77711	0.7527	-75.66378	0.008
H ₂ O	-76.466197	0.021236	-76.441181	-76.46260	-	-76.36316	0.008

Table S3: Total electronic energies, zero point vibrational energies, enthalpies and Gibbs Free energies (hartree) of all reactants. All geometries are optimized using B3LYP/aug-cc-pVTZ and the B3LYP values corresponds to this level of theory. S^2 refers to the expectation value of the total spin before projection.. $E_{CCSD(T)-F12}$ refer to the electronic energy calculated with CCSD(T)-F12a/cc-pVDZ-F12 on the B3LYP/aug-cc-pVTZ geometries

Water adducts, RH^{...}H₂O

				CCSD(T)-F12			
	E _{B3LYP}	ZPVE _{B3LYP}	H _{B3LYP}	G_{B3LYP}	S^2	E _{CCSD(T)-F12}	T1
CH ₄	-	-	-	-		-	-
CH ₃ F	-216.27548	0.06236	-216.20617	-216.24275	_	-215.97783	0.0091
(CH ₃) ₂ CHF	-294.94636	0.11883	-294.81757	-294.86263	-	-294.49792	0.010
CF ₃ H	-	-	-	-	-	-	-
CH ₃ OH	-192.25080	0.07524	-192.16781	-192.20574	_	-191.96629	0.009
(CH ₃) ₂ CHOH	-270.91740	0.13155	-270.77591	-270.81986	-	-270.48392	0.009
CF ₂ HOH	-390.82975	0.06010	-390.76068	-390.80389	-	-390.32858	0.010
CH ₃ NH ₂	-172.38001	0.08836	-172.28405	-172.32169	_	-172.10778	0.009
(CH ₃) ₂ CH NH ₂	-251.04229	0.14463	-250.88776	-250.93160	-	-250.62219	0.009
CF ₂ HNH ₂	-370.95304	0.07333	-370.87097	-370.91373	-	-370.46221	0.010
ОН	-152.24355	0.03290	-152.20465	-152.23638	0.7526	-152.03605	0.008148

Table S4: Total electronic energies, zero point vibrational energies, enthalpies and Gibbs Free energies (hartree) of all water adducts. All geometries are optimized using B3LYP/aug-cc-pVTZ and the B3LYP values corresponds to this level of theory. S^2 refers to the expectation value of the total spin before projection.. $E_{CCSD(T)-F12}$ refer to the electronic energy calculated with CCSD(T)-F12a/cc-pVDZ-F12 on the B3LYP/aug-cc-pVTZ geometries

Reactions complexes – without water

		B3LYP					
	E_{B3LYP}	$ZPVE_{B3LYP}$	H_{B3LYP}	G_{B3LYP}	S^2	E _{CCSD(T)-F12}	T1
CH ₄	-	-	-	-	-	-	-
CH ₃ F	-215.57850	0.049616	-215.52198	-215.55944	0.7526	-215.27835	0.009
(CH ₃) ₂ CHF	-294.24963	0.10598	-294.13458	-294.17830	0.7526	-293.79806	0.009
CF ₃ H	-414.15158	0.03456	-414.10983	-414.14989	0.7526	-413.63483	0.010
CH ₃ OH	-191.55498	0.06227	-191.48571	-191.52304	0.7527	-191.26810	0.009
(CH ₃) ₂ CHOH	-270.22160	0.11851	-270.09385	-270.13737	0.7527	-269.78530	0.009
CF ₂ HOH	-390.13256	0.04748	-390.07713	-390.11901	0.7526	-389.62842	0.010
CH ₃ NH ₂	-171.68502	0.07570	-171.60273	-171.63818	0.7527	-171.41017	0.009
(CH ₃) ₂ CH NH ₂	-250.34728	0.13187	-250.20647	-250.24849	0.7527	-249.92431	0.009
CF ₂ HNH ₂	-370.25650	0.06030	-370.18817	-370.22830	0.7543	-369.76009	0.016

Table S5: Total electronic energies, zero point vibrational energies, enthalpies and Gibbs Free energies (hartree) of all reaction complexes without water. All geometries are optimized using B3LYP/aug-cc-pVTZ and the B3LYP values corresponds to this level of theory. S^2 refers to the expectation value of the total spin before projection.. $E_{CCSD(T)-F12}$ refer to the electronic energy calculated with CCSD(T)-F12a/cc-pVDZ-F12 on the B3LYP/aug-cc-pVTZ geometries

Reactions complexes – with water

			B3LYP					
X	Y	E _{B3LYP}	ZPVE _{B3LYP}	H _{B3LYP}	G_{B3LYP}	S^2	E _{CCSD(T)-F12}	T1
CH ₄		-	-	-	-	-	-	-
CH ₃ F		-292.05598	0.07460	-291.97167	-292.01606	0.7527	-291.65240	0.009
(CH ₃) ₂ CHF		-370.72703	0.13076	-370.58420	-370.63514	0.7527	-370.17278	0.009
CF ₃ H		-490.62910	0.05942	-490.55863	-490.60882	0.7527	-490.01051	0.010
CH ₃ OH		-268.03171	0.08710	-267.93473	-267.97993	0.7527	-267.64318	0.009
(CH ₃) ₂ CHO	Н	-	-	-	-	-	-	-
CF ₂ HOH		-	-	-	-	-	-	-
CH ₃ NH ₂		-248.16210	0.10029	-248.05219	-248.09669	0.7527	-247.78569	0.009
(CH ₃) ₂ CH N	IH_2	-326.82428	0.15653	-326.65576	-326.70642	0.7527	-326.29985	0.009
CF ₂ HNH ₂		-	-	-	-	-	-	-

Table S6: Total electronic energies, zero point vibrational energies, enthalpies and Gibbs Free energies (hartree) of all reaction complexes with water. All geometries are optimized using B3LYP/aug-cc-pVTZ and the B3LYP values corresponds to this level of theory. S^2 refers to the expectation value of the total spin before projection.. $E_{CCSD(T)-F12}$ refer to the electronic energy calculated with CCSD(T)-F12a/cc-pVDZ-F12 on the B3LYP/aug-cc-pVTZ geometries

Transition state – without water

		B3LYP/AVTZ					
	E _{B3LYP}	ZPVE _{B3LYP}	H _{B3LYP}	G_{B3LYP}	S^2	E _{CCSD(T)-F12}	T1
CH ₄	-116.30344	0.05074	-116.24714	-116.27925	0.7571	-116.10620	0.034
CH ₃ F	-215.57301	0.04590	-215.52127	-215.55525	0.7567	-215.26425	0.029
(CH ₃) ₂ CHF	-294.24683	0.10493	-294.13358	-294.17396	0.7541	-293.79337	0.013
CF ₃ H	-414.14536	0.02999	-414.10843	-414.14660	0.7568	-413.61902	0.026
CH ₃ OH	-191.54897	0.06110	-191.48158	-191.51607	0.7540	-191.26006	0.014
(CH ₃) ₂ CHOH	-270.21702	0.11767	-270.09092	-270.13107	0.7540	-269.77966	0.013
CF ₂ HOH	-390.12532	0.04404	-390.07408	-390.11263	0.7562	-389.61244	0.023
CH ₃ NH ₂	-171.67643	0.07336	-171.59672	-171.63117	0.7551	-171.39750	0.018
(CH ₃) ₂ CH NH ₂	-250.34057	0.13017	-250.20190	-250.24205	0.7549	-249.91467	0.015
CF ₂ HNH ₂	-370.24851	0.05569	-370.18538	-370.22411	0.7564	-369.74651	0.024
CH₃CHO	-229.67053	0.06567	-229.59805	-229.63462	0.7536	-229.30915	0.015

Table S7: Total electronic energies, zero point vibrational energies, enthalpies and Gibbs Free energies (hartree) of all transition states without water. All geometries are optimized using B3LYP/aug-cc-pVTZ and the B3LYP values corresponds to this level of theory. S^2 refers to the expectation value of the total spin before projection.. $E_{CCSD(T)-F12}$ refer to the electronic energy calculated with CCSD(T)-F12a/cc-pVDZ-F12 on the B3LYP/aug-cc-pVTZ geometries

Transition state - with water

		B3LYP/AVTZ					
	E _{B3LYP}	ZPVE _{B3LYP}	H _{B3LYP}	G_{B3LYP}	S^2	E _{CCSD(T)-F12}	T1
CH ₄	-192.77624	0.07445	-192.69255	-192.73692	0.7572	-192.47741	0.028
CH ₃ F	-292.04790	0.06971	-291.96945	-292.01090	0.7572	-291.63853	0.026
(CH ₃) ₂ CHF	-370.72389	0.12714	-370.58555	-370.63311	0.7566	-370.16479	0.021
CF ₃ H	-490.62039	0.05366	-490.55609	-490.60547	0.7570	-489.99252	0.024
CH₃OH	-268.02794	0.08418	-267.93512	-267.97557	0.7565	-267.63270	0.025
(CH ₃) ₂ CHOH	-346.69761	0.14256	-346.54392	-346.59085	0.7546	-346.15740	0.014
CF ₂ HOH	-466.59878	0.06642	-466.52200	-466.56816	0.7571	-465.98490	0.024
CH ₃ NH ₂	-248.15662	0.09685	-248.05116	-248.09166	0.7566	-247.77302	0.025
(CH ₃) ₂ CH NH ₂	-326.82225	0.15458	-326.65661	-326.70314	0.7558	-326.29306	0.018
CF ₂ HNH ₂	-446.72544	0.08025	-446.63520	-446.67984	0.7569	-446.12365	0.023
CH ₃ CHO	-306.15216	0.09094	-306.05169	-306.09538	0.7529	-305.68904	0.014

Table S8: Total electronic energies, zero point vibrational energies, enthalpies and Gibbs Free energies (hartree) of all transition states with water. All geometries are optimized using B3LYP/aug-cc-pVTZ and the B3LYP values corresponds to this level of theory. S^2 refers to the expectation value of the total spin before projection.. $E_{CCSD(T)-F12}$ refer to the electronic energy calculated with CCSD(T)-F12a/cc-pVDZ-F12 on the B3LYP/aug-cc-pVTZ geometries

Optimized geometries

All geometries are optimized on the B3LYP/aug-cc-pVTZ level of theory.

Reactants

CH_4

C,-0.13626834,-0.031446584,0. H,0.2263798818,-1.0572102172,-0.0000008781 H,0.2263992503,0.4814281313,0.8883335575 H,0.2263978164,0.4814291453,-0.8883335575 H,-1.2242503085,-0.0314333954,0.0000008781

CH_3F

C,0.0,0.0,-0.6374804735 H,0.0000001243,1.0321167902,-0.986484557 H,-0.8938394222,-0.5160582875,-0.986484557 H,0.8938392979,-0.5160585027,-0.986484557 F,0.0,0.0,0.7543741445

(CH₃)₂CHF

C,0.,0.0348290701,0.3662511024 H,0.,0.1368866752,1.4544102242 F,0.,1.356710722,-0.1347691437 C,1.2726438926,-0.641919088,-0.0977431807 H,2.146044765,-0.0776739254,0.2270404423 H,1.3388534654,-1.6479818631,0.3189769317 H,1.2905493243,-0.7167418571,-1.1856747846 C,-1.2726438926,-0.641919088,-0.0977431807 H,-1.3388534654,-1.6479818631,0.3189769317 H,-2.146044765,-0.0776739254,0.2270404423 H,-1.2905493243,-0.7167418571,-1.1856747846

CF₃H

C,-0.3987037579,0.5217522264,-0.0220245556 H,-0.0357486953,1.0350094953,-0.9110291574 F,0.0373267054,1.1382650956,1.0863870404 F,0.0373031056,-0.7464296926,-0.0017444955 F,-1.7397361677,0.5100838153,-0.0017945019

CH₃OH

C,0.6668654019,-0.0202997308,-0.0000002012 H,1.0817192433,0.9855384458,-0.0000077328 H,1.0268582312,-0.5438879134,-0.8906375489 H,1.0268589693,-0.5438751419,0.8906443638 O,-0.7497580594,0.1202824659,-0.0000005066 H,-1.1496367864,-0.7537911256,0.000000459

(CH₃)₂)CHOH

C,0.0206460321,0.0579655019,0.3855996568 H,-0.8608684136,-0.4512081462,-0.0091742762 C,-0.1061797961,0.1619381313,1.9012497274 H,-1.0029637933,0.7184668105,2.1715023328 H,-0.1615433041,-0.827231517,2.3588981291 H,0.7590772567,0.6774704516,2.3270319202 C,1.2674784292,-0.7035787471,-0.0497384616 H,1.2603831485,-1.7229384093,0.3398873148 H,1.3261762378,-0.7494312368,-1.1366772487 H,2.1704028912,-0.2116161611,0.3223599328 O,-0.0337678772,1.3530063611,-0.2271977869 H,0.7220343889,1.868289971,0.0743140494

CF₂HOH

C,-0.0076432595,-0.0088324115,0.3333473625 H,-0.050191407,0.0366114945,1.4238688406 F,-0.258038473,1.2538017935,-0.1375955403 F,-0.9875081502,-0.8142247587,-0.1154588456 O,1.1658812959,-0.4897559501,-0.1693660463 H,1.8955209939,0.0673948323,0.1241382291

CH₃NH₂

C,0.7082279694,0.0001004587,0.0164626701 H,1.1146324158,0.8783834553,-0.4852397155 H,1.1150865163,-0.8767261272,-0.4874333878 H,1.0787602719,-0.0010851667,1.0490639455 N,-0.7499309198,-0.0000332287,-0.1184379199 H,-1.1551374092,0.8124148794,0.3289858188

(CH₃)₂)CHNH₂

C,0.0000450607,0.024246739,0.3612319641 H,0.000016656,0.0381997592,1.4614285079 N,0.0008083436,1.3834596203,-0.1992900436 H,-0.8138919501,1.9027153242,0.1054613977 H,0.8163024125,1.9016574799,0.1051398266 C,1.262362253,-0.7002288968,-0.0957111836 H,2.1599702972,-0.1734119391,0.2351295172 H,1.3003216416,-1.7105180914,0.3136051085 H,1.2905523623,-0.7629407516,-1.1846326898 C,-1.2630448623,-0.6988408075,-0.0957883952 H,-1.3022266554,-1.7090323318,0.3136566873 H,-2.1600822393,-0.170937252,0.234866061 H,-1.2911713198,-0.7616468524,-1.1847047582

CF2HNH2

C,-0.0081795659,-0.0070181508,0.3522304461 H,-0.0880880064,0.0529269597,1.4365772987 N,1.3164770308,-0.1717133918,-0.0698482405 H,1.3971440556,-0.1685870949,-1.0791115309 H,1.9368235826,0.5128638561,0.3382941983 F,-0.6207291326,1.1332770268,-0.1590768226 F,-0.7641609642,-1.0461442051,-0.1014443491

H_2O

O,0.0,0.0,0.1164830922 H,0.0,0.7633767419,-0.4687600461 H,0.0,-0.7633767419,-0.4687600461

OH

O,0.0,0.0,0.1053101775 H,0.0,0.0,-0.8699981775

Water adducts, RH"H2O

 CH_{4}

No stationary structure localized

CH₃F

C,1.35812348,-0.4357927152,0.6563029381 H,0.6028760095,-1.2125835123,0.7547560046 H,2.0437674164,-0.6649217247,-0.1570469175 H,1.9004523795,-0.3028395555,1.5903153966 O,-1.9942334925,-0.2439078476,0.1021943309 H,-1.2500034055,0.3708521948,0.1164792436 F,0.7101485192,0.7717401748,0.3532754642 H,-2.7795806767,0.3037045158,0.0205246494

(CH₃)₂CHF

C,0.714434,0.001603,-0.301076 H,0.341248,-0.105282,-1.321057 O,-2.836287,-0.000178,-0.22553 H,-2.049028,-0.428845,0.135831 F,-0.153553,-0.811314,0.492183 C,2.108507,-0.570627,-0.178269 H,2.12366,-1.616164,-0.483519 H,2.795831,-0.016386,-0.818902 H,2.463198,-0.50038,0.850501 C,0.569685,1.430659,0.170755 H,1.176969,2.089046,-0.4521 H,-0.467695,1.75475,0.101773 H,0.903968,1.52905,1.204275

CF₃H

No stationary structure localized

H,-3.571628,-0.57235,0.009333

CH₃OH

C,1.5693889303,-0.4540348752,0.0103864987 H,1.3191433971,-1.1424123735,-0.7928559472 H,0.8018636056,1.2428883592,0.6496126489 O,-2.1423227698,-0.2011465792,0.071907517 H,-1.2276256163,0.105844534,-0.0391650724 O,0.6193860718,0.6134020568,-0.0537033699 H,-2.6122380138,0.1075944771,-0.7070795719 H,1.5111821716,-0.9880855865,0.9612146556 H,2.5872022235,-0.0886120127,-0.1420163587

(CH₃)₂)CHOH

C,-0.73393,-0.008371,-0.309601 H,-0.425434,-0.073307,-1.354074 H,0.03953,-0.815869,1.321511 O,2.921597,0.041826,-0.131746 H,2.045154,-0.3445,0.034643 O,0.237788,-0.824961,0.378548 C,-0.646887,1.441015,0.148401 H,0.367687,1.819937,0.032886 H,-1.320066,2.070621,-0.435371 H,-0.933882,1.532824,1.199557 C,-2.128404,-0.600448,-0.160293 H,-2.852551,-0.038481,-0.7519 H,-2.142786,-1.638189,-0.491675 H,-2.453949,-0.566995,0.8829 H,3.456555,-0.67414,-0.483932

CF₂HOH

C,-0.534815594,0.0016688365,-0.1675488719 H,0.2199993766,0.0114462108,-0.9481900536 H,-0.5948631033,-0.0474324872,1.7449635836 O,2.6389683564,0.0030942259,-0.3724403787 H,2.2674669727,-0.0169799933,0.516891108 O,0.0761805357,-0.0384306441,1.0489853113 H,3.5935008447,0.0140237488,-0.2609020781 F,-1.3330860611,1.1040965765,-0.2744273113 F,-1.3637853278,-1.0708234741,-0.3306433094

CH₃NH₂

N,-0.6883440098,0.7048003927,-0.0010188254 C,-1.4509031073,-0.5521045552,0.0033593301 H,-1.1646172488,-1.1445606125,-0.8643053891 H,-0.9076238584,1.2543433304,-0.8229529327 H,-0.927640842,1.2722105188,0.8029733001 O,2.0499209375,-0.2591503544,0.0100448057 H,1.1704105898,0.1723274944,0.0120159131 H,2.6905896188,0.455407551,0.0492947 H,-1.1867489398,-1.1251076967,0.8908895225 H,-2.53705314,-0.4174830686,-0.0118274242

$(CH_3)_2)CHNH_2$

N,-0.2016485734,-0.9161226244,0.4306888639 C,0.7081242975,-0.0020785038,-0.291861957 H,0.3877243789,-0.0263190542,-1.3366796529 H,-0.0599434557,-1.8724727407,0.1244879265 H,0.0023584965,-0.8967189921,1.4251150354 O,-2.8424591498,0.0566742625,-0.2723324693 H,-2.0069255591,-0.3553813503,0.0326016056 C,0.5077138359,1.4151975205,0.2347448511 H,1.1209062901,2.1235507889,-0.3225545997 H,-0.535121582,1.7171946456,0.150327214 H,0.8003938745,1.4808223036,1.286616896 C,2.1749646372,-0.4340554757,-0.2261505489 H,2.3052455403,-1.447104571,-0.6117761084 H,2.8074730948,0.231251486,-0.8167947758 H,2.5389492668,-0.415486875,0.8042517956 H,-3.5495253925,-0.4664118199,0.1135239238

CF₂HNH₂

N,-0.1723637907,-0.7527090375,0.4305511525 C,0.7644730601,0.0101578353,-0.2964111318 H,0.52242482,0.0487038403,-1.3571438559 H,-0.2924157844,-1.6742215926,0.0294509126 H,0.0983116834,-0.8364453018,1.4041891841 O,-3.0221342313,-0.0217219108,-0.1925263042 H,-2.1107330278,-0.0942604576,0.1323536452 H,-3.3259232749,0.8492663092,0.0769001648 F,0.7970747115,1.2739511017,0.2081552231 F,2.0576778341,-0.4674387863,-0.1848489903 OH

O,-0.3640798177,1.5141316321,0.2000097466 H,-0.067480124,0.5885635849,0.049333927 O,0.4350278602,-1.227695417,-0.1526250723 H,-0.2239763644,-1.865827304,-0.4429856682 H,0.9289317758,-1.6584206458,0.5518918568

Reactions complexes - without water

 CH_4

No stationary structure localized

 CH_3F

C,1.514417,0.39979,-0.0000002222 H,0.99423,1.355037,-0.033988 H,2.101707,0.313218,0.911804 H,2.144641,0.272811,-0.877751 O,-2.247252,0.188039,-0.000075 H,-1.354058,-0.213207,0.000904 F,0.55611,-0.625657,-0.000041

(CH₃)₂CHF

C,0.6427,-0.000009,-0.279923 H,0.134121,-0.001426,-1.245586 O,-3.134917,-0.001163,-0.255421 H,-2.248476,-0.003775,0.162847 F,-0.410414,-0.00762,0.688984 C,1.441606,-1.269486,-0.093857 H,0.801726,-2.145381,-0.192266 H,2.223991,-1.330365,-0.851548 H,1.911592,-1.286538,0.889856 C,1.426977,1.277996,-0.089866 H,2.208824,1.350086,-0.847116 H,0.777133,2.146798,-0.185837 H,1.896464,1.297476,0.894042

CF₃H

C,0.758419865,0.0029003696,0.2961435659 H,0.4222166321,0.00647807,1.3313756727 F,1.31646444372,1.1746309561,-0.0265519186 F,1.6506225856,-0.9709820027,0.0890746242 F,-0.2891893903,-0.2056488447,-0.5319338351 O,-3.3275636783,0.0084702724,0.188408616 H,-2.5347914513,-0.0902358206,-0.3721887251

CH₃OH

C,1.55355,-0.395167,0.016492 H,1.876266,-0.543557,1.049097 H,0.764122,1.396242,0.276534 O,-2.258284,-0.188942,0.013831 H,-1.312044,0.082963,-0.026699 O,0.479761,0.545458,-0.068269 H,2.404505,-0.079954,-0.59057 H,1.174034,-1.336815,-0.37181

(CH₃)₂)CHOH

C,-0.663103,-0.001882,-0.289279 H,-0.258613,-0.031936,-1.301906 H,0.20999,-0.326158,1.462455 O,3.172295,-0.026618,-0.234682 H,2.236462,-0.146431,0.051293 O,0.47232,-0.337956,0.535778 C,-1.153012,1.406923,0.014627 H,-0.341489,2.126546,-0.086417 H,-1.954183,1.692792,-0.668286 H,-1.545794,1.469441,1.032938 C,-1.752429,-1.055915,-0.151179 H,-2.575104,-0.853601,-0.838369 H,-1.35703,-2.047305,-0.368701 H,-2.159894,-1.06151,0.863208

CF₂HOH

C,-0.681428,0.001763,-0.280386 H,-0.299599,0.016554,-1.297975 H,0.022242,-0.150828,1.498691 O,3.216515,0.011707,-0.227704 H,2.298001,-0.04487,0.10676 O,0.35776,-0.135256,0.591335 F,-1.571731,-1.017653,-0.137357 F,-1.375633,1.146204,-0.033111

CH₃NH₂

N,0.538292,0.652061,-0.000088 C,1.450553,-0.501336,-0.000121 H,2.51085,-0.231582,-0.000869 H,1.252555,-1.112512,0.879264 H,1.251513,-1.113326,-0.878708 H,0.697972,1.234957,0.812817 H,0.697878,1.234942,-0.813024 O,-2.203454,-0.208467,0.000271

H,-1.254495,0.098845,-0.000312

(CH3)2)CHNH2

N,-0.339469,-0.834157,0.370937 C,0.671885,0.000156,-0.312645 H,0.414428,-0.027736,-1.374755 H,-0.251781,-1.804052,0.086758 H,-0.185939,-0.815785,1.37479 O,-3.032245,-0.012528,-0.195526 H,-2.102197,-0.308636,0.01336 C,0.537228,1.439292,0.173446 H,1.231713,2.091998,-0.35535 H,-0.474447,1.81051,0.014911 H,0.7647,1.509515,1.240746 C,2.098597,-0.527837,-0.147585 H,2.182039,-1.556264,-0.50398 H,2.809742,0.078908,-0.710891 H,2.399724,-0.508802,0.902764

CF₂HNH₂

N,-0.386427,-0.64369,0.592511 C,0.523285,0.007553,-0.258606 H,0.1511,0.059954,-1.278442 H,-0.727176,-1.520627,0.229877 H,-0.06073,-0.72114,1.547863 O,-2.489802,0.00161,-0.340574 H,-2.535591,0.72229,0.308399 F,0.754429,1.26414,0.213257 F,1.762916,-0.60779,-0.288706

Reactions complexes – with water

 CH_4

No stationary structure localized

CH₃F

C,1.710358,-0.751132,0.064966 H,2.220258,-0.888498,1.015939 H,0.751802,-1.265446,0.056916 H,2.338692,-1.078912,-0.760183 O,-1.861605,-1.41831,-0.050552 H,-1.799197,-0.434539,0.02153 O,-1.277795,1.317147,0.126124 H,-1.601786,2.015584,-0.449311 H,-0.315118,1.297838,0.020438 F,1.473155,0.630008,-0.099967

(CH₃)₂CHF

C,-1.0331521125,0.1680637436,0.0371515829 H,-0.2007144213,0.8691744014,0.1046550062 O,2.3504694082,1.7168475742,0.0967812709 H,2.4886662566,0.7383728364,0.0626142409 0,2.3673261161,-1.0790545239,-0.0282436372 H,2.8535390555,-1.6202802244,-0.6561771166 H,1.4261920938,-1.2641537503,-0.174522909 F,-0.4266196394,-1.0898163862,-0.3131500025 C,-1.6977826846,-0.011421336,1.3819821858 H,-0.9743740431,-0.3345566407,2.1293680167 H,-2.1253166051,0.9367510471,1.7106449576 H,-2.4980489775,-0.7498433723,1.3228398829 C,-1.9670182068,0.5445787282,-1.0889265768 H,-2.4055861736,1.5236100888,-0.8915698669 H,-1.4288095698,0.5981868712,-2.0343274407 H,-2.7739044966,-0.1830360572,-1.1831235941

CF_3H

C,1.072619,0.11275,0.016663 H,0.456531,1.009123,0.078398 O,-1.617642,1.755686,0.050252 H,-2.237197,0.987903,0.032641 O,-2.796979,-0.795636,-0.089 H,-3.241879,-1.223319,0.649298 H,-1.979328,-1.288735,-0.223619 F,0.301658,-0.962675,-0.283012 F,2.00374,0.226157,-0.936254 F,1.681617,-0.134802,1.182965

CH₃OH

C,-1.6567157578,-0.8770096635,0.2231996928 H,-0.9098699539,-1.4996781911,-0.2714432153 H,-1.7954885955,0.5515632257,-1.1289557682 O,2.173533479,-1.1787424542,-0.142278919 H,1.8908520569,-0.2344759167,-0.0591293398 O,1.065253825,1.3786299751,0.0582428152 H,1.2059687247,2.0206981349,0.7588959107 H,0.10663299,1.1883667353,0.033426992 O,-1.5594182895,0.4927922791,-0.1985190767 H,-1.4692572574,-0.8858919818,1.2938290053 H,-2.6569322214,-1.2713841428,0.037491903

(CH₃)₂)CHOH

No stationary structure localized

CF₂HOH

No stationary structure localized

CH₃NH₂

N,-1.5557686877,0.4676740459,-0.2799590402 C,-1.6088644439,-0.9048276861,0.2541728527 H,-2.5051056264,-1.4578347737,-0.040429424 H,-0.7309711618,-1.4518975188,-0.085197647 H,-1.5727447047,-0.8644840305,1.3419094943 H,-1.6131773318,0.4551052326,-1.2918115776 H,-2.3465747856,1.0105544763,0.0457380525 O,2.1856498205,-1.1700911492,-0.1251309963 H,1.8904150612,-0.2268889527,-0.0470247127 O,1.076945711,1.3665037992,0.0828842355 H,1.2125048414,1.9406864188,0.8409639792 H,0.1079673078,1.1688561381,0.0334257837

(CH₃)₂)CHNH₂

N,-0.5565896489,1.1993376702,-0.275443764 C,-1.0704923764,-0.1814020297,-0.113381258 H,-0.3549548371,-0.8297364907,-0.623952486 H,-0.618286793,1.4843081986,-1.2475766473 H,-1.136017429,1.8482990488,0.2485313102 O,2.6124899665,-1.5674264914,-0.3935238125 H,2.5682438376,-0.5905550182,-0.2301765809 O,2.2235092336,1.1389082474,0.0722842548 H,2.5461111258,1.5941052628,0.8541554729 H,1.2405027918,1.2623096176,0.0444792802 C,-1.0656559528,-0.5400005737,1.3685297737 H,-1.3876851505,-1.5705549823,1.5158704531 H,-0.0688408528,-0.4326519829,1.7946657032 H,-1.7501726893,0.1052349521,1.9266266372 C,-2.4498320854,-0.3804408956,-0.7427775173 H,-2.438530641,-0.1261245936,-1.8041340493 H,-2.773661618,-1.4186233341,-0.6537597701 H,-3.1969368811,0.2480153947,-0.2512819999

CF₂HNH₂

No stationary structure localized

Transition states - without water

CH_4

C,0.6293767827,0.6027737294,-0.0163602243 H,-0.5233065309,0.269296974,-0.1927526575 H,0.6841844935,1.017313303,0.9851478809 H,0.8030115768,1.3445416988,-0.7905767244 O,-1.7733372025,-0.1708971822,-0.2907584591 H,-1.774873359,-0.7980487142,0.4500358521 H,1.2342571094,-0.2893563087,-0.1432130277

CH₃F

C,-0.5938712444,0.6185707034,0.0001036771 H,0.5594081999,0.3564104224,0.0004198311 H,-0.7844831181,1.1793432252,-0.9134541952 H,-0.7847768308,1.1798285981,0.9133053654 O,1.8874352922,-0.0774044761,0.0005411772 H,1.7165244772,-1.0342059643,-0.000879357 F,-1.3141337761,-0.5471355087,0.0002935015

(CH₃)₂CHF

C,0.332572,-0.000014,-0.068579 H,-0.657496,-0.000233,-0.573716 O,-2.452472,-0.000155,-0.457755 H,-2.396262,-0.000546,0.515372 F,0.035863,-0.000382,1.313369 C,1.068508,1.278032,-0.398494 H,1.251132,1.339242,-1.471671 H,0.483037,2.145859,-0.098902 H,2.02849,1.305644,0.119722 C,1.069319,-1.277467,-0.398991 H,0.484398,-2.145786,-0.099748 H,1.252002,-1.338136,-1.472189 H,2.029308,-1.304673,0.119233

CF₃H

C,0.2791613971,-0.0148752603,0.0000006803 H,-0.9404206935,-0.1653738219,0.0009302856 F,0.5678437276,1.2876565113,-0.0026645824 O,-2.2314528483,-0.1914425913,0.001629324 H,-2.4401661733,0.7577769923,-0.000587601 F,0.7849778977,-0.5881489908,-1.0872093606 F,0.7860986927,-0.5839498393,1.0888932541

CH₃OH

C,0.784993,0.697843,0.002045 H,0.997973,1.156714,-0.960589 H,-0.298771,0.82474,0.211816 H,1.340783,1.216912,0.787051 O,-1.936173,-0.025192,0.041352 H,-1.444951,-0.741096,-0.402212 O,1.132626,-0.672525,-0.095336 H,1.123387,-1.062588,0.783532

(CH₃)₂)CHOH

C,0.0000804823,-0.2568119712,0.0043578607 H,-0.0368608377,-0.5168061586,1.0870325149 C,1.4514208792,-0.043060654,-0.3807700768 H,2.0350776043,-0.9409109052,-0.1783826382 H,1.5292441745,0.194132683,-1.4431402799 H,1.8801322684,0.780569777,0.1884413909 C,-0.6804798322,-1.3728152992,-0.772891208 H,-0.1734969866,-2.3230462332,-0.6037282013 H,-1.7197921034,-1.4932354676,-0.4598713798 H,-0.661774112,-1.1555632504,-1.8426548986 O,-0.3699353448,0.3733073262,2.7143250941 H,-0.4927205054,1.1235541814,2.1016409643 O,-0.6742111767,0.9969670151,-0.168750835 H,-1.6240748274,0.8409721489,-0.1816405639

CF₂HOH

C,-0.3220064943,-0.0319240926,-0.1116335104 H,0.8233562742,-0.0673498408,-0.345978192 O,2.245611309,0.1226176416,-0.3988135799 H,2.5166450184,-0.4932927125,0.303561957 O,-0.8495823145,1.1728777133,-0.421956219 H,-0.2814699627,1.8738458572,-0.0789699311 F,-0.9534940297,-0.9724127063,-0.8205350322 F,-0.4605098004,-0.3354768598,1.2096735076

CH₃NH₂

N,-1.1504071354,-0.6041864763,-0.0319654656 C,-0.6272242505,0.7453987324,0.0120320613 H,-0.9925135689,1.3545617075,0.8446427412 H,0.4903200965,0.7159686712,0.1253100489 H,-0.8245745373,1.2583663808,-0.9268875267 H,-1.3509163034,-0.9799849358,0.8835131351 H,-1.9717790729,-0.6944798856,-0.611255329 O,1.9211120968,-0.1726719412,-0.0155632418 H,1.3424586751,-0.9114942529,-0.2785654234

(CH₃)₂)CHNH₂

N,-0.068623,-0.228099,1.342683

C,0.308382,-0.011397,-0.05292 H,-0.640776,-0.099202,-0.649846 H,-0.065232,-1.209198,1.590339 H,0.542301,0.261993,1.983579 O,-2.360237,-0.086703,-0.523944 H,-2.156539,0.00013,0.427427 C,0.81318,1.411316,-0.241566 H,0.983763,1.624804,-1.295944 H,0.090707,2.132724,0.139141 H,1.759663,1.556339,0.287892 C,1.26543,-1.063935,-0.611309 H,0.862279,-2.06873,-0.475722 H,1.433386,-0.913697,-1.678538 H,2.230758,-1.010755,-0.100789

CF₂HNH₂

N,-0.6815072044,1.3213009352,-0.0014070471 C,-0.2863812076,-0.0126362505,0.0094806966 H,0.8927414001,-0.0860722517,-0.0436783144 H,-0.3101664981,1.830516897,-0.7900627212 H,-1.6834305068,1.4400556396,0.0873475544 O,2.2837249424,0.0014065344,-0.0799667482 H,2.4378206764,0.3269989292,0.8231599585 F,-0.7234768974,-0.6291906731,1.1291970469 F,-0.7269697045,-0.7730637601,-1.0486904256

Transition states – with water

 CH_4

C,2.0727059417,-0.6469752898,0.0010448063 H,2.6134074976,-0.7247655153,0.939368095 H,1.2363873763,0.2264876743,0.1922948394 H,1.5344193274,-1.5542466767,-0.2535162809 O,0.2448255784,1.0563961234,0.3632339834 H,-0.501706908,0.4604885493,0.1568565734 O,-2.1648722137,-0.5464987301,-0.2148762326 H,-2.7553474932,-0.5507701658,0.5451792519 H,-2.6694860528,-0.1478601183,-0.9309870967 H,2.6844019463,-0.2745088509,-0.8149729391

CH_3F

C,-1.5523498252,0.0860408006,0.087570165 H,-1.9736426777,0.1420104778,1.0881838441 H,-0.7041783885,0.965605223,0.0105963612 H,-2.2584177795,0.2732822267,-0.7181088314 O,0.3051140435,1.7854316894,-0.0506051168 H,1.0258497327,1.1258347371,0.0253025068 O,1.9613589179,-0.6081418521,0.1254866853 H,2.5881442712,-0.8640096082,-0.5576577124 H,1.1854196938,-1.1667987989,-0.0065901174 F,-0.9423579881,-1.1378678953,-0.0978967844

(CH₃)₂CHF

C,-0.8356534112,-0.049633797,0.0385774823 H,-0.0571917818,0.8267377801,0.1451980482 O,0.9579928918,1.8055980784,0.2632446751 H,1.7170082574,1.1904163293,0.1793278279 O,2.7256861436,-0.4846110476,-0.0837412148 H,3.3052872016,-0.5888320842,-0.8438814829 H,1.9398191231,-1.0136339872,-0.276169334 F,-0.0780072744,-1.176877087,-0.3520170433 C,-1.4351037774,-0.3096588739,1.3944915058 H,-0.6610823064,-0.5740471053,2.112859703 H,-1.9432312748,0.5857180039,1.7510488449 H,-2.1598745667,-1.1253307287,1.338861797 C,-1.7818168512,0.3111521481,-1.0750086499 H,-2.3094557127,1.2316816591,-0.8273103707 H,-1.2387560751,0.4660909283,-2.0056466221 H,-2.5160715857,-0.4845132162,-1.2218251666

CF₃H

C,0.9492079724,-0.0460645973,-0.0006060757 H,0.0368338309,0.8083476849,-0.0049040154 O,-0.9576171119,1.5668359595,-0.0134821724 H,-1.6935347203,0.9185032145,-0.0039428828 O,-3.0872524468,-0.3626928283,0.0086784469 H,-3.3088845195,-0.8756678537,0.7918262488 H,-3.2503083418,-0.9403674405,-0.7432253875 F,0.7522567284,-0.9265878012,-0.984099618 F,2.1125332262,0.5736659461,-0.1839890529 F,0.9636523826,-0.6876702841,1.1684325089

CH₃OH

C,1.4346252317,0.1236945068,0.3268521058 H,0.6610547096,0.9849919052,0.1105813474 H,1.1229964466,-1.0638348985,-1.1892184408 O,-0.4377196524,1.8425626079,-0.1675925813 H,-1.1280599699,1.1538443788,-0.0764496778 O,-1.8444787374,-0.7300253393,0.0319740383 H,-2.3269734951,-1.1236669378,0.7641355725 H,-0.9623305812,-1.1346738649,0.0366028163 O,1.0015098882,-1.0931246038,-0.2344436258 H,1.4811453923,0.0059811933,1.4058219397 H,2.3843667676,0.4699120522,-0.0837594943

(CH₃)₂)CHOH

C,0.836809,-0.009429,0.018584 H,0.109936,0.838824,0.11076 H,0.208399,-0.834869,-1.658964 O,-1.24683,1.889652,0.191338 H,-1.886282,1.144357,0.128679 O,-2.534524,-0.645433,-0.171026 H,-2.969952,-1.19953,0.482263 H,-1.650956,-1.030583,-0.318524 O.0.195716,-1.063905,-0.723244 C,1.125235,-0.544068,1.40657 H,1.529979,0.246962,2.036763 H,0.214517,-0.916448,1.874241 H,1.84838,-1.360258,1.357764 C,2.064173,0.509105,-0.710287 H,1.802529,0.884857,-1.701563 H,2.513412,1.333308,-0.156573 H,2.807838,-0.282786,-0.820596

CF₂HOH

C,0.8395452349,-0.0291191297,0.0025939853 H,0.0160200537,0.9211458945,-0.0038991336 H,0.7694422837,-1.9418718254,-0.1219581146 O,-0.9245776716,1.7326350146,-0.0161953951 H,-1.6890391088,1.1186391604,-0.0602859564 O,-2.7483306727,-0.4982793767,-0.0851422214 H,-3.3202008995,-0.6858172705,0.6652019869 H,-1.9966406569,-1.099131966,-0.0039079799 O,0.1539558144,-1.1999030234,-0.0212140726 F,1.6068191726,0.0910456098,1.1065948444 F,1.6505274502,0.1039119124,-1.066759943

CH₃NH₂

N,1.130568254,-0.9876762781,-0.129773301 C,1.4431735797,0.3934499658,0.1554268328 H,2.1817468937,0.8442447782,-0.5100227076 H,0.4913401661,1.0729575256,0.0109649791 H,1.7285482565,0.5238079183,1.1960134217 H,1.2815416373,-1.2329750164,-1.0984774492 H,1.634150945,-1.6394441071,0.4556520475 O,-0.7355870036,1.7749063973,-0.1413802428 H,-1.3105249816,0.9823388402,-0.0983385495

O,-1.7600969935,-0.951531197,0.0027306514

H,-2.1494518572,-1.2933354114,0.8122824558

H,-0.8026568963,-1.1531164154,0.0505728619

(CH3)2)CHNH2

N,0.106699,-1.168743,-0.633124

C,0.813286,-0.054019,0.002026

H,0.069869,0.814481,0.055719

H,0.107986,-1.079465,-1.64254

H,0.534057,-2.058855,-0.402353

O,-1.058027,1.877568,0.109437

H,-1.781388,1.213463,0.069611

O,-2.623609,-0.525694,-0.130682

H,-3.045153,-0.96033,0.615473

H,-1.743458,-0.950092,-0.242262

C,1.17219,-0.409934,1.434381

H,1.585832,0.454155,1.951627

H,0.294632,-0.746603,1.985898

H,1.921757,-1.207458,1.458014

C,1.994365,0.474119,-0.805645

H,1.684617,0.75054,-1.814425

H,2.420195,1.360495,-0.335157

H,2.778208,-0.285116,-0.882343

CF₂HNH₂

N,0.231534,-1.011703,-0.823751

C,0.802109,-0.03762,0.016305

H,0.075012,0.955355,0.0455

H,0.098291,-0.649421,-1.759689

H,0.791649,-1.858275,-0.851985

O,-0.871086,1.825491,-0.050341

H,-1.640745,1.222497,0.030606

O,-2.595219,-0.50638,-0.001591

H,-2.97536,-0.881767,0.797923

H,-1.782229,-1.007437,-0.178363

F,0.939722,-0.52593,1.265268

F,2.030326,0.411908,-0.376391