Hydrogen bonded complexes	s (7)				
ئ⊛ر ئور	.	• ⊶ • • •	نود و دون مدر وی ور		
1. Ammonia_dimer	2. Water_dimer	3. Formic_acid_dimer	4. Formamide_dimer		
(C _{2h})	(C _s)	(C _{2h})	(C _{2h})		
ుత్తు ి తేతి •త్విత్తి హిత్తితు					
5. Uracil_dimer_HB	6. 2-pyridone_2-amino-pyridine	7. Adenine_Thymine_WC			
(C _{2h})	(C ₁)	(C ₁)			
Complexes with predominan	t dispersion contribution (8)				
, , , , , , , , , , , , , , , , , , ,	303 Joj	38985 1985	teĝet t eĝet		
8. Methane_dimer (D _{3d})	9. Ethene_dimer	10. Benzene_Methane	11. Benzene_dimer		
	(D _{2d})	(C ₃)	(C _{2h})		
<i>∵دو⊦و</i> ر دو∂یور	ితిత్రిల్ల - యాయా	ుజిత్రిలు సిత్రిత్రం	્ ઝે જીં-ઝું		
12. Pyrazine_dimer	13. Uracil_dimer_stack	14. Indole_Benzene_stack (C1)	15. Adenine_Thymine_stack		
(C _s)	(C ₂)		(C ₁)		
Mixed complexes (7)					
చి క్రి	ete de ce	き ふ	s Se Se		
16. Ethene_Ethyne	17. Benzene_Water	18. Benzene_Ammonia	19. Benzene_HCN		
(C _{2v})	(C _s)	(C _s)	(C _s)		
2000 - 2000 2003 - 2003 2003 - 2003	,a,a, ,a,a,a, ,a,a,a, , <u>a,a</u> ,a,	وي الالتي د و رورور			
20. Benzene_dimer	21. Indole_Benzene T-shape	22. Phenol_dimer			
(C _{2v})	(C ₁)	(C ₁)			

Table S1 Binding structures for the S22 data set ^a

^a P. Jurečka, J. Šponer, J. Černý, P. Hobza, Phys. Chem. Chem. Phys., 2006, 8, 1985-1993. Also see http://www.begdb.com

	Hydrogen-bonded	DNA base pairs (38)			
			المحمد من المحمد الم محمد المحمد ال محمد المحمد ال		
1. GC WC	2. mGmC WC	3. AT WC	4. mAmT H		
	- 200 - 00 - 200 - 200 - 00 - 00 - 00 - 200 - 00 -	نون مرغم فرغم رغم م مرغم رغم م			
8. 80GC WCpl	6. IC WC pl	7. GU wobble	8. CCH+		
2000 - 000 - 000 2000 - 000 2000 - 000	ာမ္မွာရဲ႕ ေရာက်မွာ အမွာရဲ႕ အမွာရာ				
9. UU Calcutta pl	10. UU pl	11. 6tGC WC pl	12. A4tU WC		
			مونغود مونغ مونغود مونغ مونغو مغربه		
13. 2-aminoAT	14. 2-aminoAT pl	15. AF	16. G4tU		
ان هو می موجود مربع در می موجود مربع در موجود در مربع	3,00,00,00 3,00,00,00 3,00,00,00 3,00,00,00 0,00,00,00 0,00,00 0,00,00 0,00,0				
17. G2tU	18. AC pl	19. GG pl	20. G6tG pl		
موه و می و می و موه و می و موه و م موه و می و موه و م	30°00 0 30°00 000 1900 0 200 0 200 1900 0 200 1900 0 200		من م		
21. 6tGG pl	22. GA 1	23. GA 1 pl	24. GA 2		
ం చేస్తారు. చేస్తా ఉద్యత్త ప్రత్య స్త్రాత్య ప్రత్యాత్ర స్రాత్య ప్రత్యాత్ర	المحمد في محمد محمد محمد محمد ومحمد محم	ంత్రత్య చిత దిశ్రత వ్యత్తితా స్థిత్య ప్రతిశ్రత్			
25. GA 2 pl	26. GA 3	27. GA4	28. AA 1 pl		
100,000 (000) 100,000 (000) 100,000 (000) 100,000 (000)	مهمی می می می می می می می		موقع موقع رفي من موقع		
29. AA 2 pl	30. AA 3 pl	31. 8oGG	32. 2tU2tU pl		

Table S2 Binding structures for 38 Hydrogen-bonded DNA base pairs in the JSCH data set.^a

^a Complexes 33-38 are HB base pairs whose geometries were taken from experiments (P. Jurečka, J. Šponer, J. Černý, P. Hobza, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1985-1993. Also see <u>http://www.begdb.com</u>). For complexes 33-35, the sugar units were replaced by methyl groups, while for complexes 36-38, they are replaced by hydrogen atoms. Therefore, complexes 33-35 are renamed here as mA...mA, mG...mC and mA...mT, respectively.

Interstrand base pairs (32)							
ుత్తారి - త్రాంత్ - అంత్రి క్రాంగ్	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		္က ေရ ္က ေရ ္က ေရ က ေရ က ေရ က ေရ က ေရ က ေရ က ေရ က ေရ				
39. GG0/3.36CGis036	40. GG0/3.36GCis036 (100)	41. AA20/3.05ATis2005 (102)	42. AA20/3.05TAis2005 (41)				
States	૾ૢઙૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	૾૱૱૽૿૱૽૿ૡૻ ૾ૺૢૺ૿૾૱૿૿ૡ૿ૺ૾	ૢૢૢૢૢૢૡૢૢૢૢૢૢૡ ૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ				
43. GC0/3.25C//Cis	44. GC0/3.25G//Gis	45. CG0/3.19G//Gis (46)	46. CG0/3.19C//Cis (45)				
૾ઙૺ૽૿૱ૢૺૼૢૺ ૰ઙ૽ૼઌ૿ૢૺૼૼૼૼૼ૱	. સુંચ્લુ . સુંચ્ . સુંચ્લુ . સુંચ્ . સુંચ્લુ . સુંચ્ . સું . સુંચ્ . સું . સુંચ્ . સું . સું . સુંચ્ . સું . સું . સું . સું . સું . સું . સુંચ્ . સું . સું . સું . સુંચ્ . સું . સું . સુંચ્ . સું . સું . સું . સું . સું . સું . સું . સુંચ્ . સું . સચં . સું . સું . સચ . સું . સચ . સું . સચં . સચ્ચ. . સું . સ્ં . સું	૾ૡૢ૽ૢૼૢૡૢૢૢૢૢૢૢૢૢૺ ૢૡૢૡૢૢૢૢૢૢૡૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	ికిం ^{తాత} ం. ు _{రి} కింతు				
47. GA10/3.15A//Cis	48. GA10/3.15T//Gis	49. AG08/3.19T//Gis	50. AG08/3.19A//Cis				
૾ૡૢ૿ઙ૿ૡૢૺ ૾ૡૢ૿ઙ૿ૡ૿ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ ૾ૢૢૡૢ૿૿૾ૢૢૢૢૢૢૢૢૢૢ	ుత్ర పెద్ది తిరి సిల్ప ప్రత్య ప్రత సిల్లం ప్రత్య ప్రత్య ప్రత్య ప్రత్య ప్రత్య ప్రత్య ప్రత్య ప	૾ૺૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૺૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	ించింది. ఎంది చిల్లా ఎంది చిల్లా ఎంది చిల్లా లా చిల్లా లా చిల్లా				
51. TG03.19A//Gis	52. TG03.19T//Cis	53. GT10/3.15T//Cis	54. GT10/3.15A//Gis				
	ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	૾૰ૢ૿ૢઙૺૢ૿ૢૢઙૺ ૢઙૺૢ૿ૺૼૼૼ૱૱	دو و و کرد دو و ور نو				
55. AT10/3.26T//Tis	56. AT10/3.26A//Ais	57. TA08/3.16A//Ais	58. TA08/3.16T//Tis				
૾ૡ૾ૢ૽ૼ૱ૢ૿૱ ૢૢૢૡ૾૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	، چې چې . رونه کور .	من م	າອີອາອີອາ າອອາອອ າງເກິ່ງອີອອອີຊາ າງເກິ່ງອີອອອຊາ				
59. AA0/3.24A//Tis	60. AA0/3.24T//Ais	61. mAmA IS	62. mTmT IS				
ೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢ	ٷ ۅڡۅڡ ؞ۅڰۄڰۄۮ	્યું કુટ્ટ કુટે . ન્યું કે કુટ					
63. mGmG IS	64. mCmC IS	65. mAmG IS	66. mTmC IS				
ن موجود رویو موجود موجود	ింది. సంకర్ణలు సంకర్ణలు సంకర్ణలు	્ટ કુ ³³ ં ં કુટ કુટ	ავა ავ∛ფ ა€ვ-∛ვა ა≋ე≪				
67. CA IS	68. GG IS	69. GG IS	70. CC IS				

Table S3 Binding structures for 32 interstrand base pairs in the JSCH data set.^a

^a P. Jurečka, J. Šponer, J. Černý, P. Hobza, Phys. Chem. Chem. Phys., 2006, 8, 1985-1993. Also see http://www.begdb.com). As pointed

out by Sherrill and co-workers (L. A. Burns, Á. Vázquez-Mayagoitia, B.G. Sumpter, C. D. Sherrill, J. Chem. Phys., 2011, 134, 084107/1–25), reordering of several systems is necessary to bring the published geometries in line with the original authors' intentions. For example, the geometry provided in the database for complex 40, under the name of 'GG0/3.36 GCis036', actually represents a G...G stack, instead of a G...C interstrand as indicated by this name. Here, we add a parenthesis after the original name as 'GG0/3.36 GCis036 (100)'. Number 100 suggests that the geometry actually associated with complex 40 is that of complex 100 in the database. Similarly, we modify the name of complex 41 as 'AA20/3.05 ATis2005(102)', meaning that geometry used for calculations of complex 41 should be taken from that in the database under the name of complex 102. Complexes 61-66 are renamed to show explicitly that base pairs are methylated.

	Stacked bas	Stacked base pairs (54)							
ୢୄ୶ୢୠୢ ୄୢ୶ୢୠୢୄୠୄ ୶ଌୄୠ୶	- હવે <mark>ક</mark> ્રેક્ટ્રક્ટ્ર - હર કર્વક	ુઙ ૢૺ ૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺ ●ૺૺઙૺૢૢૺૺૼૺૺૺૺૺૺૺૢૢૺૼૺૺૺૺૺૺૺૺૺ	ა®ფე <mark>მ</mark> ეშა_ე აე [®] მე⊄მე <mark>9</mark> ეე [®] მე⊄მე <mark>9</mark>						
71. GC S	72. mGmC S	73. AT S	74. mAmT S						
	ుత్యతం సత్యత్యం	Jan Star							
75. CC1	76. CC2	77. CC3	78. CC4						
ికం- ిరలితం -ిక్రతం		دود دوخود بطوفو بفوغو							
79. CC5	80. CC6	81. CC7	82. CC8						
	•		دود بونگو بالا و بالا بالا و بالا بالا بالا بالا بالا بالا بالا بالا						
83. CC9	84. CC10	85. CC11	86. CC12						
● 3 0 3 3 4 3 0 0 0 0 3 3 0 0 0 0 3 3 0 0 0 0 0 3 0 0 0 0		38 5 8 59 - 6 59.9.	૰ૢઙ૽૿૿ૺૢૼ૱૾ ૰ૢ૱ૢ૱ ૾ૡૢ૾ૺૺૺૺૺૺૺૺૺૺૺૺૢૢૼૺૺૺૺૺૺૢૢૼૺૺૺૺૺૺૺૺૺૺૺૺ						
87. CC13	88. CC14	89. AAst	90. GGst						
, 2 స్టోప్ ఫి ల • 3 ఫి కెళ్లు	,8388, ∘\$388,	ుర్పత్తిత్రి తెలిత్రిత్రి	ૻૢૺૢૢૢૢૢૢૢ૽૿૾૱ૢૢૢૢૢૢૢૢૢૢૢૢૻ૱ ૻૡૺૢૢૢૢૢૢૢૢૢૢૢૺ૱ૢ						
91. ACst	92. GAst	93. CCst	94. AUst						
ు ఇక జిల్లికిం సరిశ్రీశిం సరిశ్రీశిం	ు <mark>క్రికి ప్రి-ల</mark> ు ఎంహ్రికి ప్రి-లు	ుర్మార్తు. నర్మార్థాలు	ა ფ ⁰ მე ⁰ მე ⁰ ა ა ⁸ მე ⁰ მე ⁰ ა						
95. GCst	96. CUst	97. UUst	98. GUst						
ి. కిల్లె పెరిచి. 'సౌక్రె పెరిచి. 'సౌక్రె పెరిచి.	ઝ-લ ુકુ કુકુ . *59- 9 -9	ి తృందితు . సంజల్లం,	૾૱૽ૢ૾૱ ૼ •ૹૺૺૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ						
99. GG0/3.36GGs036 (40)	100. GG0/3.36CCs036 (99)	101. AA20/3.05AAs2005	102. AA20/3.05ATs2005 (42)						

Table S4 Binding structures for 54 stacked base pairs in the JSCH data set.	a
---	---

ు పెంది. సర్మాదించిం సర్మాదిం	૱ૡૢ૾ૡૢ૽ૺ૱ ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	ుడియ్రెస్తి. - కిర్మిప్తి ప్రా - కిర్మిప్తి ప్రాకర్తించి	ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ
103. GC0/3.25G//Cs	104. CG0/3.19G//Cs	105. GA10/3.15A//Gs	106. GA10/3.15T//Cs
૾ૡૢ૿૱ૢૺૢ૿ૢ૽૱ૺ ૺ૱ૢૢૢૢૢૢૢૺૼ૱૱૱	ుక్రాజిత్రాళ్లి • జిత్రాజించి • జిత్రిజిల్లి	<u>مَ</u>	ుత్యాత్రం తెలితిలు
107. AG08/3.19A//Gs	108. AG08/3.19T//Cs	109. TG03.19T//Gs	110. TG03.19A//Cs
●લ્લે-હુર ગ્લેકટ્ટું-હુર	ు ఇక్రోస్థారి గ్రా సత్తి తిగ్రా	્ર ટ ું ² છે ₇ જીન્ડ ● લ્ટ્રે ટ્રિઝ્ટૈ- ર્ન્ડ	૱ૡૢૢૢૢૺઙૢ૽ૢૺ૱ ૢ૾ ૾ ૺૢૢૡૢૢ૱
111. GT10/3.15T//Gs	112. GT10/3.15A//Cs	113. AT10/3.26A//Ts	114. TA08/3.16A//Ts
૾ઙૢ૽ૢૺૢઙૢઽ૱; ૢઙૺૢૢૢૢૢૺૺૺૺ૱ૢ૱ૢ	•త్యాత్యంత్స •నిత్యాహు	ૻ૱ૢૢૺ૱૱ ૢૻ૱૱૱૱૱	A Star Star
115. AA0/3.24A//As	116. AA0/3.24T//Ts	117. mAmT S	118. mGmC S
	ૢૢૡ૽ૼ૱ૢૡ૱ૣૡૺ ૱ૢૡૢૺૼૢૣૢૢૼૡ૽૿ૢૡૺ	్రత్యత్యాత్యా సరిశ్రాశాల సంత్రాత్యా	ుర్మెంది. సార్థిత్యాలు
119. mAmC S	120. mTmG S	121. GC S	122. AG S
●ટેં€્ટ્રુ: ૭-વુ-ડુ‡ન્	ు ఇ రి పెందింది. సెస్ట్రెస్తు ●		
123. CG S	124. GC S		

^a P. Jurečka, J. Šponer, J. Černý, P. Hobza, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1985-1993. Also see <u>http://www.begdb.com</u>). Geometry re-ordering is required for complexes 99, 100, and 102. Complexes 117-120 are renamed to show explicitly that base pairs are methylated.

Amino acid pairs (19)							
	39- - - - - - - - - - - - - - - - - - -	يى مەرەب ھە مەرەب ھە مەرەب ھە					
125. F30-K46	126. F30-L33	127. F30-Y13					
³ ,5 ⁴ ,5,5 ⁴ , ³ ,5 ⁴	ితిచ్చ పరిశ్రీ కిల్లి ఎల్లె కిల్లి కిల్లి						
128. F30-F49	129. F30-Y4	130. F49-C39					
2 8 4 3 - 6 2 3 4 2 - 6 2 4 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 2 - 6 - 6	ు సూత్రంత్ ాత్తి ఎందు ఎందు ఎందు ఎందు ఎత్తెలు ఎందు ప్రత్య ఎందు ప్రత్య	ر کور کرد د کور دی مح دور دی مح دور محمه دهن محرفه دهنی محرفه					
131. F49-C6	132. F49-K46	133. F49-V5					
రాహింది. సరివారంగా సంగాతి సాత్రాతంగా సంగాతి సాత్రాతంగా సాత్రారంగా సాత్రాతంగా సాత్రారంగా	من د موجود د دونشو شود د فرشو شو د فرشو موجود د موجود	میں					
134. F49-W37	135. F49-Y4	136. F49-PB(Y4-V5)					
دون و رون دون و رون و و و و و و و و دو و و د د رون رون د ر							
137. F49-PB(V5-C6)	138. E47-K6(1IU5)	139. E49-K6(1BQ9)					
140. E54-K2(1SMM)	141. E50-K30(1BRF)	142. E50-K52(1BRF)					
వచ్చి , సి. సి. వం , పి. పి. పి. పి. , పి. పి. పి. పి. తి వితించి , విత్త,							
143. E49-K6(1BRF)							

Table S5 Binding structures for 19 amino acid pairs in the JSCH data set.^a

^a P. Jurečka, J. Šponer, J. Černý, P. Hobza, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1985-1993. Also see <u>http://www.begdb.com</u>). As pointed out by Antony and Grimme (J. Antony, S. Grimme, *Phys. Chem. Chem. Phys.*, 2006, 8, 5287-5293), residue 37 of 1RB9 is tryptophan (W), not tyrosine (Y). Complex 134 should be renamed as F49-W37.

Table S6 Comparison of different extrapolated CCSD(T)/CBS	reference data:	binding energies
(kcal/mol) at the equilibrium geometries for the S22 data set		

	S22 ^a	S22x5 ^b	S22P ^c	S22A ^{d,e}	S22B ^f
Hydrogen bonded complexes (7)					
1. Ammonia_dimer (C _{2h})	3.17	3.142	3.145	3.15	3.133
2. Water_dimer (C _s)	5.02	4.974	5.004	5.07	4.989
3. Formic_acid_dimer (C _{2h})	18.61	18.586	18.751	18.81	18.753
4. Formamide_dimer (C _{2h})	15.96	15.947	16.063	16.11	16.062
5. Uracil_dimer_hb (C _{2h})	20.65	20.460	20.643	20.69	20.641
6. 2-pyridone_2-aminopyridine (C ₁) ^g	16.71	16.702	16.938	17.00	16.934
7. Adenine_Thymine_wc (C ₁)	16.37	16.371	16.554	16.74	16.660
Complexes with predominant dispersion contribution (8)					
8. Methane_dimer (D _{3d})	0.53	0.529	0.529	0.53	0.527
9. Ethene_dimer (D _{2d})	1.51	1.484	1.482	1.48	1.472
10. Benzene_Methane (C ₃)	1.50	1.495	1.448	1.45	1.448
11. Benzene_dimer (C _{2h})	2.73	2.807	2.655	2.62	2.654
12. Pyrazine_dimer (C _s)	4.42	4.509	4.256	4.20	4.255
13. Uracil_dimer_stack (C ₂)	10.12	9.867	9.783	9.74	9.805
14. Indole_Benzene_stack (C ₁)	5.22	4.682	4.523	4.59	4.524
15. Adenine_Thymine_stack (C ₁)	12.23	12.225	11.857	11.66	11.730
Mixed complexes (7)					
16. Ethene_Ethyne ($C_{2\nu}$)	1.53	1.492	1.503	1.50	1.496
17. Benzene_water (C _s)	3.28	3.274	3.280	3.29	3.275
18. Benzene_Ammonia (C _s)	2.35	2.348	2.319	2.32	2.312
19. Benzene_HCN (C _s)	4.46	4.520	4.540	4.55	4.541
20. Benzene_dimer (C _{2v})	2.74	2.797	2.717	2.71	2.717
21. Indole_Benzene_T-shape (C ₁)	5.73	5.736	5.627	5.62	5.627
22. Phenol_dimer (C ₁)	7.05	7.048	7.097	7.09	7.097

^a P. Jurečka, J. Šponer, J. Černý, P. Hobza, Phys. Chem. Chem. Phys., 2006, 8, 1985-1993.

^b L. Gráfová, M. Pitoňák, J. Řezáč, P. Hobza, J. Chem. Theory Comput., 2010, 6, 2365-2376.

^c R. Podeszwa, K. Patkowski, K. Szalewicz, Phys. Chem. Chem. Phys., 2010, 6, 2365-2376.

^d T. Takatani, E. G. Hohenstein, M. Malagoli, M. S. Marshall, C. D. Sherrill, J. Chem. Phys., 2010, 132, 144104.

^e L. A. Burns, Á. Vázquez-Mayagoitia, B.G. Sumpter, C. D. Sherrill, J. Chem. Phys., 2011, 134, 084107.

^f M. S. Marshall, L. A. Burns, C. D. Sherrill, J. Chem. Phys., **2011**, 135, 194102.

^g The name '2-pyridoxine' is changed to '2-pyridone' to be consistent with its structure.

Table S7 Electronic energy (in au) of XYG3 with basis sets of 6-311+G(d,p) (PP1), and 6-311+G(3df,2p) (PP2).

		PP1 ^a			PP2 ^a	
	Dimers	Mono-A	Mono-B	Dimers	Mono-A	Mono-B
Hydrogen bonded complexes (7)						
1. Ammonia_dimer (C _{2h})	-113.081318	-56.537716	-56.537716	-113.116652	-56.555812	-56.555812
2. Water_dimer (C _s)	-152.821736	-76.405824	-76.405824	-152.863643	-76.427405	-76.427405
3. Formic_acid_dimer (C _{2h})	-379.438721	-189.704747	-189.704747	-379.550565	-189.759907	-189.759907
4. Formamide_dimer (C _{2h})	-339.704638	-169.840032	-169.840032	-339.807249	-169.890842	-169.890842
5. Uracil_dimer_hb (C _{2h})	-829.404628	-414.685839	-414.685839	-829.658088	-414.812628	-414.812628
6. 2-pyridone_2-aminopyridine (C1)	-626.976416	-323.406982	-303.541763	-627.168571	-323.506095	-303.635456
7. Adenine_Thymine_WC (C1)	-921.180326	-467.164037	-453.989702	-921.463810	-467.308990	-454.128617
Complexes with predominant dispe	rsion contributi	on (8)				
8. Methane_dimer (D _{3d})	-80.992330	-40.495978	-40.495978	-81.019590	-40.509559	-40.509559
9. Ethene_dimer (D _{2d})	-157.110042	-78.554082	-78.554082	-157.159235	-78.578679	-78.578679
10. Benzene_Methane (C ₃)	-272.657546	-232.159313	-40.496005	-272.742600	-232.230800	-40.509640
11. Benzene_dimer (C _{2h})	-464.323153	-232.159302	-232.159302	-464.465999	-232.230785	-232.230785
12. Pyrazine_dimer (C _s)	-528.445569	-264.219333	-264.219329	-528.606714	-264.299985	-264.299976
13. Uracil_dimer_stack (C ₂)	-829.390141	-414.686820	-414.686820	-829.642729	-414.813401	-414.813401
14. Indole_Benzene_stack (C1)	-595.853129	-232.159304	-363.685922	-596.038197	-232.230765	-363.799738
15. Adenine_Thymine_stack (C1)	-921.175255	-467.164370	-453.990922	-921.457422	-467.308717	-454.129757
Mixed complexes (7)						
16. Ethene_Ethyne (C _{2v})	-155.862153	-78.554081	-77.305754	-155.910014	-78.578679	-77.328897
17. Benzene_Water (Cs)	-308.570898	-232.159305	-76.405732	-308.663776	-232.230758	-76.427271
18. Benzene_Ammonia (Cs)	-288.700860	-232.159312	-56.537571	-288.790237	-232.230781	-56.555734
19. Benzene_HCN (Cs)	-325.567275	-232.159309	-93.400411	-325.664843	-232.230743	-93.426249
20. Benzene_dimer (C _{2v})	-464.323513	-232.159308	-232.159313	-464.466173	-232.230779	-232.230778
21. Indole_Benzene_T-shape (C1)	-595.854745	-232.159301	-363.685970	-596.039642	-232.230724	-363.799753
22. Phenol_dimer (C ₁)	-614.735265	-307.361078	-307.361099	-614.921880	-307.455109	-307.455140

^a Spherical basis sets are used (5d, 7f), Keywords as in Gaussian, grid = fine, scf=tight, are used.

	aDZ ^a			aTZ ^a			
	Dimers	Mono-A	Mono-B	Dimers	Mono-A	Mono-B	
Hydrogen bonded complexes (7)							
1. Ammonia_dimer (C _{2h})	-113.051452	-56.523093	-56.523093	-113.122507	-56.558725	-56.558725	
2. Water_dimer (C _s)	-152.786019	-76.388704	-76.388730	-152.869875	-76.430603	-76.430652	
3. Formic_acid_dimer (C _{2h})	-379.347902	-189.658702	-189.658702	-379.554606	-189.761611	-189.761611	
4. Formamide_dimer (C _{2h})	-339.621024	-169.797483	-169.797483	-339.811953	-169.892719	-169.892719	
5. Uracil_dimer_hb (C _{2h})	-829.202743	-414.584404	-414.584404	-829.664279	-414.814831	-414.814831	
6. 2-pyridone_2-aminopyridine (C ₁)	-626.811913	-323.322937	-303.460622	-627.178930	-323.510027	-303.640283	
7. Adenine_Thymine_WC (C1)	-920.953302	-467.049294	-453.876278	-921.472746	-467.311689	-454.132775	
Complexes with predominant dispe	rsion contribut	ion (8)					
8. Methane_dimer (D _{3d})	-80.960834	-40.479918	-40.479918	-81.025596	-40.512451	-40.512451	
9. Ethene_dimer (D _{2d})	-157.059135	-78.528388	-78.528388	-157.165256	-78.581508	-78.581508	
10. Benzene_Methane (C ₃)	-272.574139	-232.091335	-40.479845	-272.751196	-232.236101	-40.512532	
11. Benzene_dimer (C _{2h})	-464.187839	-232.091328	-232.091328	-464.476166	-232.236090	-232.236090	
12. Pyrazine_dimer (C _s)	-528.309288	-264.150778	-264.150781	-528.610777	-264.301974	-264.301965	
13. Uracil_dimer_stack (C ₂)	-829.186900	-414.584893	-414.584893	-829.646943	-414.815523	-414.815523	
14. Indole_Benzene_stack (C1)	-595.686517	-232.091348	-363.586235	-596.049458	-232.236070	-363.806108	
15. Adenine_Thymine_stack (C1)	-920.947515	-467.049130	-453.877133	-921.464719	-467.311442	-454.133916	
Mixed complexes (7)							
16. Ethene_Ethyne ($C_{2\nu}$)	-155.809495	-78.528389	-77.277971	-155.914085	-78.581507	-77.329649	
17. Benzene_Water (C _s)	-308.485887	-232.091356	-76.388656	-308.672281	-232.236060	-76.430541	
18. Benzene_Ammonia (C _s)	-288.618720	-232.091349	-56.523024	-288.798734	-232.236087	-56.558658	
19. Benzene_HCN (Cs)	-325.473567	-232.091378	-93.373725	-325.670604	-232.236045	-93.426058	
20. Benzene_dimer (C _{2v})	-464.188585	-232.091347	-232.091356	-464.477259	-232.236083	-232.236068	
21. Indole_Benzene_T-shape (C_1)	-595.688466	-232.091385	-363.586306	-596.052210	-232.236021	-363.806114	
22. Phenol_dimer (C_1)	-614.569118	-307.278240	-307.278324	-614.934592	-307.461232	-307.461282	

Table S8 Electronic energy (in au) of XYG3 with basis sets of aug-cc-pVDZ (aDZ) and aug-cc-pVTZ (aTZ).

^a Spherical basis sets are used (5d, 7f), Keywords as in Gaussian, grid = fine, scf=tight, are used.

Table S9 Binding energies (kcal/mol) at the equilibrium geometries for the S22 data set: Errors with respect to the S22B reference data for the B3LYP, MC3BB and B2PLYP methods with and without dispersion corrections. Basis set used is def2-QZVP.^a

	Ref	B3LYP ^c			B2PLYP ^c	, c	
	S22B ^b	-	-D	-D3	-	-D	-D3
Hydrogen bonded complexes (7)							
1. Ammonia_dimer (C _{2h})	3.133	0.823	-0.637	-0.087	0.393	-0.372	-0.087
2. Water_dimer (C _s)	4.989	0.219	-0.600	-0.521	-0.051	-0.480	-0.441
3. Formic_acid_dimer (C _{2h})	18.753	1.263	-1.383	-1.067	0.403	-0.983	-0.827
4. Formamide_dimer (C _{2h})	16.062	1.922	-0.871	-0.648	0.912	-0.551	-0.448
5. Uracil_dimer_hb (C _{2h})	20.641	2.651	-0.846	-0.679	1.271	-0.561	-0.499
6. 2-pyridone_2-aminopyridine (C1)	16.934	3.084	-1.085	-0.826	1.354	-0.829	-0.686
7. Adenine_Thymine_WC (C1)	16.660	3.760	-0.692	-0.470	1.890	-0.442	-0.330
Complexes with predominant dispersion co	ntribution (8))					
8. Methane_dimer (D _{3d})	0.527	0.927	0.056	0.007	0.557	0.101	0.137
9. Ethene_dimer (D _{2d})	1.472	1.972	-0.275	-0.148	1.062	-0.115	-0.058
10. Benzene_Methane (C ₃)	1.448	2.208	-0.081	-0.032	1.138	-0.061	-0.052
11. Benzene_dimer (C _{2h})	2.654	6.364	0.369	0.324	3.014	-0.127	-0.026
12. Pyrazine_dimer (C _s)	4.255	6.695	0.174	0.425	3.075	-0.341	-0.095
13. Uracil_dimer_stack (C2)	9.805	8.735	-0.726	-0.425	4.285	-0.671	-0.335
14. Indole_Benzene_stack (C1)	4.524	9.204	0.237	0.654	4.214	-0.483	-0.136
15. Adenine_Thymine_stack (C1)	11.730	12.910	-0.971	0.430	6.040	-1.231	-0.330
Mixed complexes (7)							
16. Ethene_Ethyne (C_{2v})	1.496	0.806	-0.234	-0.254	0.396	-0.149	-0.144
17. Benzene_Water (C _s)	3.275	1.805	-0.652	-0.515	0.815	-0.472	-0.345
18. Benzene_Ammonia (C _s)	2.312	2.092	-0.302	-0.268	1.042	-0.212	-0.168
19. Benzene_HCN (C _s)	4.541	2.541	-0.714	-0.199	1.181	-0.524	-0.309
20. Benzene_dimer (C _{2v})	2.717	3.637	-0.185	-0.053	1.757	-0.245	-0.193
21. Indole_Benzene_T-shape (C1)	5.627	5.027	-0.549	0.097	2.377	-0.544	-0.183
22. Phenol_dimer (C ₁)	7.097	4.067	-0.228	-0.193	1.977	-0.273	-0.273
MD ^d		3.76	-0.46	-0.20	1.78	-0.43	-0.26
MAD ^d		3.76	0.54	0.38	1.78	0.44	0.28
RMSD ^d		4.90	0.64	0.47	2.32	0.53	0.34

^a Calculation data are taken from L. Goerigk, S. Grimme, J. Chem. Theory Comput., 2011, 7, 291.

^b M. S. Marshall, L. A. Burns, C. D. Sherrill, J. Chem. Phys., **2011**, 135, 194102.

^c Errors are calculated by (Ref. – Calc.) in kcal/mol.

^d Mean deviation (MD), mean absolute deviation (MAD) and root mean square deviation (RMSD).

	Ref		XY	G3⁵			XYG	J-OS ^b	
	S22x5 ^a	PP1 ^c	PP2 ^d	aDZ ^e	aTZ^f	PP1 ^c	PP2 ^d	aDZ ^e	aTZ^f
Hydrogen bonded complexes (7)									
1. Ammonia_dimer (C _{2h})	3.142	-0.551	-0.013	-0.170	-0.123	-0.661	-0.101	-0.275	-0.235
2. Water_dimer (C _s)	4.974	-1.357	-0.608	-0.411	-0.599	-1.462	-0.666	-0.533	-0.704
3. Formic_acid_dimer (C _{2h})	18.586	0.246	-0.710	-0.559	-0.641	0.083	-0.726	-0.598	-0.659
4. Formamide_dimer (C _{2h})	15.947	0.526	-0.096	-0.410	-0.146	0.323	-0.151	-0.466	-0.214
5. Uracil_dimer_hb (C _{2h})	20.460	-0.216	-0.142	-0.835	-0.333	0.142	0.375	-0.304	0.166
6. 2-pyridone_2-aminopyridine (C ₁)	16.702	-0.662	-0.254	-1.095	-0.447	-0.502	0.052	-0.792	-0.172
7. Adenine_Thymine_WC (C1)	16.371	-0.313	-0.072	-1.032	-0.216	-0.255	0.168	-0.780	-0.015
Complexes with predominant disper	rsion contri	ibution (8))						
8. Methane_dimer (D _{3d})	0.529	0.294	0.233	-0.102	0.265	0.183	0.154	-0.196	0.174
9. Ethene_dimer (D _{2d})	1.484	0.305	0.307	0.016	0.280	0.193	0.231	-0.031	0.231
10. Benzene_Methane (C ₃)	1.495	0.098	0.139	-0.373	0.221	0.033	0.097	-0.423	0.173
11. Benzene_dimer (C _{2h})	2.807	-0.048	0.028	-0.457	0.618	0.108	0.279	-0.298	0.802
12. Pyrazine_dimer (Cs)	4.509	0.175	0.271	-0.350	0.615	0.351	0.594	-0.064	0.891
13. Uracil_dimer_stack (C ₂)	9.867	-0.487	-0.127	-0.896	0.121	-0.017	0.491	-0.268	0.702
14. Indole_Benzene_stack (C1)	4.682	-0.277	-0.146	-0.907	0.668	0.147	0.407	-0.421	1.182
15. Adenine_Thymine_stack (C1)	12.225	-0.302	0.335	-1.128	0.937	0.414	1.256	-0.190	1.824
Mixed complexes (7)									
16. Ethene_Ethyne (C _{2v})	1.492	0.038	-0.038	-0.439	0.027	-0.003	-0.046	-0.446	0.019
17. Benzene_Water (C _s)	3.274	-0.404	-0.332	-0.391	-0.167	-0.497	-0.403	-0.478	-0.238
18. Benzene_Ammonia (Cs)	2.348	-0.148	0.013	-0.389	0.062	-0.221	-0.045	-0.440	0.014
19. Benzene_HCN (Cs)	4.520	-0.221	-0.407	-0.800	-0.152	-0.231	-0.416	-0.782	-0.153
20. Benzene_dimer (C _{2v})	2.797	-0.273	-0.099	-0.886	0.162	-0.194	0.000	-0.799	0.245
21. Indole_Benzene_T-shape (C_1)	5.736	-0.209	-0.015	-1.041	0.303	-0.040	0.178	-0.849	0.489
22. Phenol_dimer (C ₁)	7.048	-1.165	-0.251	-0.759	-0.192	-1.060	-0.073	-0.633	-0.069
MD		-0.23	-0.09	-0.61	0.06	-0.14	0.08	-0.46	0.20
MAD		0.38	0.21	0.61	0.33	0.32	0.31	0.46	0.43
RMSD		0.50	0.28	0.69	0.41	0.47	0.43	0.52	0.61

Table S10 Binding energies (kcal/mol) at the equilibrium geometries for the S22 data set: XYG3 and XYGJ-OS errors with respect to the S22x5 reference data

^a L. Gráfová, M. Pitoňák, J. Řezáč, P. Hobza, J. Chem. Theory Comput., 2010, 6, 2365-2376.

^b Errors are calculated by (Ref. – Calc.) in kcal/mol.

^c Pople basis set 1 = 6-311+G(d,p).

^d Pople basis set 2 = 6-311+G(3df,2p).

^e Dunning's aug-cc-pVDZ basis set.

^f Dunning's aug-cc-pVTZ basis set.

Table S11 Binding energies (kcal/mol) at the equilibrium geometries for the S22 data set: Errors with respect to the S22x5 reference data for the B3LYP, MC3BB and B2PLYP methods with and without dispersion corrections. Basis set used is 6-311+G(3df,2p).

	Ref		B3LYP ^b		MC3	BBB ^{b,c}			B2PLYP ^b	
	S22x5 ^a	-	-D	-D3	-	-D	-		-D	-D3
Hydrogen bonded complexes (7)										
1. Ammonia_dimer (C _{2h})	3.142	0.880	-0.579	-0.030	0.562	0.215	0.44	5	-0.320	-0.035
2. Water_dimer (C _s)	4.974	0.153	-0.666	-0.587	0.145	-0.050	-0.17	0	-0.599	-0.560
3. Formic_acid_dimer (C _{2h})	18.586	0.846	-1.800	-1.484	0.949	0.319	0.21	3	-1.173	-1.017
4. Formamide_dimer (C _{2h})	15.947	1.706	-1.087	-0.864	1.652	0.987	0.87	8	-0.585	-0.482
5. Uracil_dimer_hb (C _{2h})	20.460	2.315	-1.181	-1.015	1.781	0.949	1.06	5	-0.766	-0.705
6. 2-pyridone_2-aminopyridine (C ₁)	16.702	2.762	-1.406	-1.148	1.884	0.891	1.10	4	-1.080	-0.936
7. Adenine_Thymine_WC (C1)	16.371	3.317	-1.135	-0.913	2.489	1.429	1.52	8	-0.804	-0.692
Complexes with predominant disper	rsion contri	bution (8)								
8. Methane_dimer (D _{3d})	0.529	0.914	0.042	-0.006	0.659	0.452	0.55	8	0.102	0.138
9. Ethene_dimer (D _{2d})	1.484	1.923	-0.324	-0.197	0.903	0.368	1.07	0	-0.107	-0.050
10. Benzene_Methane (C ₃)	1.495	2.060	-0.229	-0.180	0.701	0.156	0.97	1	-0.228	-0.219
11. Benzene_dimer (C _{2h})	2.807	5.890	-0.105	-0.150	1.095	-0.333	2.27	5	-0.865	-0.765
12. Pyrazine_dimer (C _s)	4.509	6.587	0.066	0.317	1.686	0.133	2.70	2	-0.713	-0.468
13. Uracil_dimer_stack (C ₂)	9.867	8.081	-1.379	-1.079	2.308	0.056	3.28	1	-1.674	-1.339
14. Indole_Benzene_stack (C1)	4.682	8.501	-0.466	-0.049	1.366	-0.769	3.14	4	-1.553	-1.206
15. Adenine_Thymine_stack (C1)	12.225	12.571	-1.310	0.091	2.474	-0.831	5.25	7	-2.014	-1.113
Mixed complexes (7)										
16. Ethene_Ethyne (C _{2v})	1.492	0.737	-0.302	-0.323	0.493	0.245	0.32	3	-0.221	-0.217
17. Benzene_Water (Cs)	3.274	1.569	-0.888	-0.751	0.316	-0.269	0.53	5	-0.752	-0.625
18. Benzene_Ammonia (Cs)	2.348	1.963	-0.431	-0.397	0.578	0.008	0.87	9	-0.375	-0.331
19. Benzene_HCN (Cs)	4.520	2.137	-1.118	-0.603	0.068	-0.707	0.70	9	-0.996	-0.781
20. Benzene_dimer (C _{2v})	2.797	3.312	-0.510	-0.378	0.813	-0.097	1.29	3	-0.709	-0.657
21. Indole_Benzene_T-shape (C1)	5.736	4.673	-0.902	-0.257	1.206	-0.122	1.90	1	-1.019	-0.659
22. Phenol_dimer (C ₁)	7.048	3.683	-0.612	-0.577	1.181	0.158	1.45	4	-0.796	-0.796
MD ^d		3.48	-0.74	-0.48	 1.15	0.14	1.4	3	-0.78	-0.61
MAD ^d		3.48	0.75	0.52	1.15	0.43	1.44	1	0.79	0.63
RMSD ^d		4.62	0.90	0.66	1.35	0.58	1.8	3	0.93	0.72

^a L. Gráfová, M. Pitoňák, J. Řezáč, P. Hobza, J. Chem. Theory Comput., 2010, 6, 2365-2376.

 $^{\rm b}$ Errors are calculated by (Ref. – Calc.) in kcal/mol.

^c MP2 calculation was done with 6-31+G(d,p) basis set.

^d Mean deviation (MD), mean absolute deviation (MAD) and root mean square deviation (RMSD).

Table S12 Binding energies (kcal/mol) at the equilibrium geometries for the S22 data set: Errors with respect to the S22x5 reference data for the B3LYP, and B2PLYP methods with and without dispersion corrections. Basis set used is def2-QZVP.^a

	Ref		B3LYP ^c			B2PLYP ^c	
	S22x5 ^b	-	-D	-D3	-	-D	-D3
Hydrogen bonded complexes (7)							
1. Ammonia_dimer (C _{2h})	3.142	0.832	-0.628	-0.078	0.402	-0.363	-0.078
2. Water_dimer (Cs)	4.974	0.204	-0.615	-0.536	-0.066	-0.495	-0.456
3. Formic_acid_dimer (C _{2h})	18.586	1.096	-1.550	-1.234	0.236	-1.150	-0.994
4. Formamide_dimer (C _{2h})	15.947	1.807	-0.986	-0.763	0.797	-0.666	-0.563
5. Uracil_dimer_hb (C _{2h})	20.460	2.470	-1.027	-0.860	1.090	-0.742	-0.680
6. 2-pyridone_2-aminopyridine (C1)	16.702	2.852	-1.317	-1.058	1.122	-1.062	-0.918
7. Adenine_Thymine_WC (C1)	16.371	3.471	-0.981	-0.759	1.601	-0.731	-0.619
Complexes with predominant disper	sion contribu	ution (8)					
8. Methane_dimer (D _{3d})	0.529	0.929	0.058	0.009	0.559	0.103	0.139
9. Ethene_dimer (D _{2d})	1.484	1.984	-0.263	-0.136	1.074	-0.103	-0.046
10. Benzene_Methane (C ₃)	1.495	2.255	-0.034	0.015	1.185	-0.014	-0.005
11. Benzene_dimer (C _{2h})	2.807	6.517	0.522	0.477	3.167	0.026	0.127
12. Pyrazine_dimer (C _s)	4.509	6.949	0.429	0.679	3.329	-0.087	0.159
13. Uracil_dimer_stack (C ₂)	9.867	8.797	-0.663	-0.363	4.347	-0.608	-0.273
14. Indole_Benzene_stack (C1)	4.682	9.362	0.395	0.812	4.372	-0.325	0.022
15. Adenine_Thymine_stack (C1)	12.225	13.405	-0.476	0.925	6.535	-0.736	0.165
Mixed complexes (7)							
16. Ethene_Ethyne (C _{2v})	1.492	0.802	-0.238	-0.258	0.392	-0.153	-0.148
17. Benzene_Water (C _s)	3.274	1.804	-0.653	-0.516	0.814	-0.473	-0.346
18. Benzene_Ammonia (Cs)	2.348	2.128	-0.266	-0.232	1.078	-0.176	-0.132
19. Benzene_HCN (Cs)	4.520	2.520	-0.735	-0.220	1.160	-0.545	-0.330
20. Benzene_dimer (C _{2v})	2.797	3.717	-0.105	0.027	1.837	-0.165	-0.113
21. Indole_Benzene_T-shape (C_1)	5.736	5.136	-0.440	0.206	2.486	-0.435	-0.074
22. Phenol_dimer (C ₁)	7.048	4.018	-0.277	-0.242	1.928	-0.322	-0.322
MD ^d		3.78	-0.45	-0.19	1.79	-0.42	-0.25
MAD ^d		3.78	0.58	0.47	1.80	0.43	0.30
RMSD ^d		4.99	0.69	0.59	2.40	0.53	0.41

^a Calculation data are taken from L. Goerigk, S. Grimme, J. Chem. Theory Comput., 2011, 7, 291.

^b L. Gráfová, M. Pitoňák, J. Řezáč, P. Hobza, J. Chem. Theory Comput., 2010, 6, 2365-2376.

^c Errors are calculated by (Ref. – Calc.) in kcal/mol.

^d Mean deviation (MD), mean absolute deviation (MAD) and root mean square deviation (RMSD).

Table S13 Binding energies (kcal/mol) at the 0.9 R_e distorted geometries for the S22 data set: Errors with respect to the S22x5 reference data for the XYG3 and XYGJ-OS methods. Basis sets used are 6-311+G(d,p) (PP1) and 6-311+G(3df,2p) (PP2).

0.0 D	Ref	Int.	B3LYF	P/PP2 °	XY	G3 °	XYG.	I-OS ^c
0.9 K _e	S22x5 ^a	Type ^b	-	-D	PP1	PP2	PP1	PP2
Hydrogen bonded complexes (7)								
1. Ammonia_dimer (C _{2h})	2.410	Е	1.085	-0.277	-0.684	-0.020	-0.808	-0.119
2. Water_dimer (C _s)	4.319	Е	0.206	-0.818	-1.504	-0.696	-1.612	-0.763
3. Formic_acid_dimer (C _{2h})	16.337	Е	0.806	-1.954	0.086	-0.960	-0.061	-0.941
4. Formamide_dimer (C _{2h})	14.141	Е	1.943	-1.160	0.698	-0.071	0.494	-0.104
5. Uracil_dimer_hb (C _{2h})	18.729	Е	2.640	-1.263	-0.106	-0.142	0.382	0.537
6. 2-pyridone_2-aminopyridine (C1)	15.126	Е	3.126	-1.782	-0.693	-0.349	-0.427	0.090
7. Adenine_Thymine_WC (C1)	15.021	Е	3.808	-1.475	-0.274	-0.115	-0.143	0.241
Complexes with predominant dispers	ion contribu	tion (8)						
8. Methane_dimer (D _{3d})	0.337	D	1.436	-0.194	0.411	0.301	0.250	0.183
9. Ethene_dimer (D _{2d})	0.681	D	2.926	-1.120	0.570	0.427	0.414	0.319
10. Benzene_Methane (C ₃)	1.088	D	2.746	-0.607	0.202	0.146	0.135	0.107
11. Benzene_dimer (C _{2h})	0.148	D	8.883	-0.916	0.258	-0.052	0.548	0.371
12. Pyrazine_dimer (Cs)	1.686	D	9.837	-0.185	0.613	0.346	0.926	0.866
13. Uracil_dimer_stack (C ₂)	6.763	Е	11.962	-1.867	-0.357	-0.251	0.302	0.639
14. Indole_Benzene_stack (C1)	1.429	D	12.149	-1.397	-0.146	-0.269	0.519	0.557
15. Adenine_Thymine_stack (C1)	7.991	М	18.300	-1.724	0.233	0.488	1.302	1.845
Mixed complexes (7)								
16. Ethene_Ethyne (C_{2v})	1.174	М	0.956	-0.553	0.124	-0.061	0.077	-0.068
17. Benzene_Water (C _s)	3.007	Е	2.140	-1.024	-0.276	-0.360	-0.383	-0.442
18. Benzene_Ammonia (Cs)	2.040	М	2.629	-0.714	-0.042	0.021	-0.125	-0.043
19. Benzene_HCN (Cs)	4.018	Е	2.781	-1.232	-0.025	-0.418	-0.019	-0.413
20. Benzene_dimer (C _{2v})	2.204	М	4.383	-0.757	-0.170	-0.087	-0.050	0.052
21. Indole_Benzene_T-shape (C1)	4.995	М	6.128	-0.614	0.106	0.164	0.334	0.421
22. Phenol_dimer (C ₁)	6.422	М	4.377	-0.903	-1.285	-0.318	-1.149	-0.097
MAD ^d -Tot			4.78	1.02	0.40	0.28	0.48	0.42
MAD-E			3.05	1.29	0.47	0.34	0.46	0.43
MAD-D			6.33	0.74	0.37	0.26	0.47	0.40
MAD-M			6.13	0.88	0.33	0.19	0.51	0.42
MARD ^e -Tot			446.32	60.97	26.43	14.44	34.68	25.63
MARD-E			44.58	17.13	9.07	5.33	9.82	6.86
MARD-D			1424.03	167.61	74.21	12.53	101.50	75.34
MARD-M			138.17	27.39	7.57	4.08	9.30	7.12

^a L. Gráfová, M. Pitoňák, J. Řezáč, P. Hobza, J. Chem. Theory Comput., 2010, 6, 2365-2376.

^b Interaction types: E, electrostatics-dominated; D, dispersion-dominated; M, mixed character.

^c Errors are calculated by (Ref. - Calc.) in kcal/mol.

^d Mean absolute deviation (MAD)

Table S14 Binding energies (kcal/mol) at the 1.0 R_e nondistorted geometries for the S22 data set: Errors with respect to the S22x5 reference data for the XYG3 and XYGJ-OS methods. Basis sets used are 6-311+G(d,p) (PP1) and 6-311+G(3df,2p) (PP2).

100	Ref	Int.	B3LY	P/PP2 ^c	XYO	G3°	XYGJ	-OS ^c
1.0 K _e	S22x5 ^a	Type ^b	-	-D	PP1	PP2	PP1	PP2
Hydrogen bonded complexes (7)								
1. Ammonia_dimer (C _{2h})	3.142	Е	0.880	-0.575	-0.55	-0.01	-0.66	-0.10
2. Water_dimer (C _s)	4.974	Е	0.167	-0.648	-1.36	-0.57	-1.46	-0.64
3. Formic_acid_dimer (C _{2h})	18.586	Е	0.846	-1.795	0.25	-0.71	0.08	-0.73
4. Formamide_dimer (C _{2h})	15.947	Е	1.706	-1.084	0.53	-0.10	0.32	-0.15
5. Uracil_dimer_hb (C _{2h})	20.460	Е	2.315	-1.186	-0.22	-0.14	0.14	0.38
6. 2-pyridone_2-aminopyridine (C ₁)	16.702	Е	2.762	-1.409	-0.66	-0.25	-0.50	0.05
7. Adenine_Thymine_WC (C1)	16.371	Е	3.317	-1.133	-0.31	-0.07	-0.26	0.17
Complexes with predominant dispersio	n contributio	on (8)						
8. Methane_dimer (D _{3d})	0.529	D	0.914	0.046	0.29	0.23	0.18	0.15
9. Ethene_dimer (D _{2d})	1.484	D	1.923	-0.322	0.30	0.31	0.19	0.23
10. Benzene_Methane (C ₃)	1.495	D	2.060	-0.230	0.10	0.14	0.03	0.10
11. Benzene_dimer (C _{2h})	2.807	D	5.890	-0.113	-0.05	0.03	0.11	0.28
12. Pyrazine_dimer (Cs)	4.509	D	6.587	0.067	0.17	0.27	0.35	0.59
13. Uracil_dimer_stack (C ₂)	9.867	М	8.081	-1.384	-0.49	-0.13	-0.02	0.49
14. Indole_Benzene_stack (C1)	4.682	D	8.501	-0.459	-0.28	-0.15	0.15	0.41
15. Adenine_Thymine_stack (C1)	12.225	М	12.571	-1.311	-0.30	0.34	0.41	1.26
Mixed complexes (7)								
16. Ethene_Ethyne (C_{2v})	1.492	М	0.737	-0.309	0.04	-0.04	0.00	-0.05
17. Benzene_Water (C _s)	3.274	М	1.569	-0.887	-0.40	-0.33	-0.50	-0.40
18. Benzene_Ammonia (C _s)	2.348	М	1.963	-0.430	-0.15	0.01	-0.22	-0.04
19. Benzene_HCN (Cs)	4.520	Е	2.137	-1.114	-0.22	-0.41	-0.23	-0.42
20. Benzene_dimer (C _{2v})	2.797	D	3.312	-0.519	-0.27	-0.10	-0.19	0.00
21. Indole_Benzene_T-shape (C1)	5.736	М	4.673	-0.893	-0.21	-0.02	-0.04	0.18
22. Phenol_dimer (C ₁)	7.048	М	3.683	-0.606	-1.16	-0.25	-1.06	-0.07
MAD ^d -Tot			3.48	0.75	0.38	0.21	0.32	0.31
MAD-E			1.77	1.12	0.51	0.28	0.46	0.33
MAD-D			4.17	0.25	0.21	0.17	0.17	0.25
MAD-M			4.75	0.83	0.39	0.16	0.32	0.36
MARD ^e -Tot			78.97	13.10	9.72	6.21	8.13	6.96
MARD-E			17.75	11.70	7.66	3.49	7.91	4.16
MARD-D			156.57	11.37	14.85	12.53	10.22	11.87
MARD-M			71.34	16.43	6.96	3.01	6.29	5.24

^a L. Gráfová, M. Pitoňák, J. Řezáč, P. Hobza, J. Chem. Theory Comput., 2010, 6, 2365-2376.

^b Interaction types: E, electrostatics-dominated; D, dispersion-dominated; M, mixed character.

^c Errors are calculated by (Ref. - Calc.) in kcal/mol.

^d Mean absolute deviation (MAD)

Table S15 Binding energies (kcal/mol) at the 1.2 R_e distorted geometries for the S22 data set: Errors with respect to the S22x5 reference data for the XYG3 and XYGJ-OS methods. Basis sets used are 6-311+G(d,p) (PP1) and 6-311+G(3df,2p) (PP2).

100	Ref	Int.	B3LY	P/PP2 ^c	XY	G3 °	XYG	J-OS ^c
1.2 K _e	S22x5 ^a	Type ^b	-	-D	PP1	PP2	PP1	PP2
Hydrogen bonded complexes (7)								
1. Ammonia_dimer (C _{2h})	2.363	Е	0.545	-0.107	-0.296	0.031	-0.370	-0.033
2. Water_dimer (C _s)	4.044	Е	0.115	-0.502	-1.074	-0.393	-1.137	-0.437
3. Formic_acid_dimer (C _{2h})	15.624	Е	0.635	-1.326	-0.096	-0.586	-0.233	-0.612
4. Formamide_dimer (C _{2h})	13.396	Е	1.167	-0.836	0.059	-0.151	-0.106	-0.214
5. Uracil_dimer_hb (C _{2h})	17.158	Е	1.685	-0.806	-0.456	-0.114	-0.240	0.210
6. 2-pyridone_2-aminopyridine (C ₁)	13.927	Е	2.058	-0.822	-0.636	-0.123	-0.582	0.033
7. Adenine_Thymine_WC (C ₁)	13.301	Е	2.454	-0.615	-0.386	0.004	-0.387	0.120
Complexes with predominant dispersi	on contribu	tion (8)						
8. Methane_dimer (D _{3d})	0.249	D	0.370	0.084	0.156	0.130	0.108	0.097
9. Ethene_dimer (D _{2d})	0.810	D	0.842	0.116	0.186	0.209	0.129	0.171
10. Benzene_Methane (C ₃)	1.128	D	1.146	0.073	0.047	0.132	0.001	0.101
11. Benzene_dimer (C _{2h})	1.917	D	2.580	0.275	-0.173	0.153	-0.112	0.246
12. Pyrazine_dimer (C _s)	3.021	D	2.939	0.373	-0.111	0.249	-0.048	0.375
13. Uracil_dimer_stack (C ₂)	6.258	М	3.543	-0.277	-0.471	0.070	-0.221	0.366
14. Indole_Benzene_stack (C1)	3.312	D	4.126	0.260	-0.281	0.061	-0.077	0.318
15. Adenine_Thymine_stack (C1)	8.232	М	5.835	-0.051	-0.462	0.326	-0.127	0.745
Mixed complexes (7)								
16. Ethene_Ethyne (C _{2v})	1.084	М	0.417	-0.027	0.011	-0.007	-0.013	-0.014
17. Benzene_Water (C _s)	2.471	М	0.886	-0.300	-0.408	-0.202	-0.475	-0.255
18. Benzene_Ammonia (Cs)	1.746	М	1.108	-0.020	-0.142	0.040	-0.197	-0.003
19. Benzene_HCN (Cs)	3.677	М	1.266	-0.388	-0.300	-0.288	-0.319	-0.307
20. Benzene_dimer (C_{2v})	2.246	D	1.901	-0.051	-0.248	-0.054	-0.216	-0.003
21. Indole_Benzene_T-shape (C1)	4.877	М	2.849	-0.248	-0.278	-0.001	-0.185	0.112
22. Phenol_dimer (C ₁)	5.787	М	2.570	-0.297	-0.904	-0.114	-0.838	0.002
MAD ^d -Tot			1.87	0.36	0.33	0.16	0.28	0.22
MAD-E			1.24	0.72	0.43	0.20	0.43	0.24
MAD-D			1.99	0.18	0.17	0.14	0.10	0.19
MAD-M			2.31	0.20	0.37	0.13	0.30	0.23
MARD ^e -Tot			58.15	8.17	10.94	6.98	8.96	7.34
MARD-E			11.68	6.70	7.18	2.50	7.79	2.87
MARD-D			113.58	13.05	17.44	15.73	11.25	14.86
MARD-M			50.31	5.19	8.53	3.26	7.97	4.67

^a L. Gráfová, M. Pitoňák, J. Řezáč, P. Hobza, J. Chem. Theory Comput., 2010, 6, 2365-2376.

^b Interaction types: E, electrostatics-dominated; D, dispersion-dominated; M, mixed character.

^c Errors are calculated by (Ref. - Calc.) in kcal/mol.

^d Mean absolute deviation (MAD)

Table S16 Binding energies (kcal/mol) at the 1.5 R_e distorted geometries for the S22 data set: Errors with respect to the S22x5 reference data for the XYG3 and XYGJ-OS methods. Basis sets used are 6-311+G(d,p) (PP1) and 6-311+G(3df,2p) (PP2).

1.5.D	Ref	Int.	B3LY	P/PP2 ^c	XY	G3 °	XYG.	J-OS ^c
1.5 K _e	S22x5 ^a	Type ^b	-	-D	PP1	PP2	PP1	PP2
Hydrogen bonded complexes (7)								
1. Ammonia_dimer (C _{2h})	1.113	Е	0.245	0.053	-0.110	0.046	-0.145	0.015
2. Water_dimer (C _s)	2.294	Е	0.086	-0.182	-0.594	-0.171	-0.631	-0.202
3. Formic_acid_dimer (C _{2h})	9.236	Е	0.496	-0.871	-0.198	-0.244	-0.281	-0.264
4. Formamide_dimer (C _{2h})	8.104	Е	0.673	-0.428	-0.057	-0.014	-0.162	-0.070
5. Uracil_dimer_hb (C _{2h})	10.462	Е	0.999	-0.517	-0.418	0.005	-0.301	0.175
6. 2-pyridone_2-aminopyridine (C ₁)	8.175	Е	1.253	-0.337	-0.458	0.018	-0.451	0.077
7. Adenine_Thymine_WC (C1)	7.434	Е	1.509	-0.200	-0.287	0.103	-0.302	0.143
Complexes with predominant dispersi	on contribu	tion (8)						
8. Methane_dimer (D _{3d})	0.062	D	0.088	0.015	0.041	0.032	0.033	0.029
9. Ethene_dimer (D _{2d})	0.203	D	0.221	0.044	0.062	0.075	0.053	0.071
10. Benzene_Methane (C ₃)	0.484	D	0.493	0.096	0.009	0.109	-0.011	0.097
11. Benzene_dimer (C _{2h})	0.529	D	0.753	0.077	-0.189	0.078	-0.155	0.120
12. Pyrazine_dimer (C _s)	0.982	М	0.875	0.103	-0.208	0.130	-0.171	0.182
13. Uracil_dimer_stack (C ₂)	2.421	М	1.020	-0.164	-0.430	0.026	-0.309	0.150
14. Indole_Benzene_stack (C1)	0.978	D	1.409	0.101	-0.274	0.118	-0.160	0.240
15. Adenine_Thymine_stack (C1)	3.246	М	1.843	-0.088	-0.510	0.134	-0.367	0.287
Mixed complexes (7)								
16. Ethene_Ethyne (C_{2v})	0.488	М	0.172	0.023	-0.002	0.011	-0.008	0.012
17. Benzene_Water (C _s)	1.298	М	0.362	-0.067	-0.249	-0.094	-0.282	-0.122
18. Benzene_Ammonia (Cs)	0.848	М	0.475	0.061	-0.083	0.056	-0.109	0.036
19. Benzene_HCN (Cs)	2.089	М	0.572	-0.057	-0.206	-0.135	-0.214	-0.145
20. Benzene_dimer (C _{2v})	1.115	D	0.864	0.073	-0.191	0.016	-0.174	0.045
21. Indole_Benzene_T-shape (C1)	2.802	М	1.371	0.057	-0.290	0.030	-0.249	0.087
22. Phenol_dimer (C ₁)	3.407	М	1.482	0.024	-0.529	0.017	-0.493	0.078
MAD ^d -Tot			0.78	0.17	0.25	0.08	0.23	0.12
MAD-E			0.75	0.37	0.30	0.08	0.32	0.14
MAD-D			0.64	0.07	0.13	0.07	0.10	0.10
MAD-M			0.91	0.07	0.28	0.07	0.24	0.12
MARD ^e -Tot			55.85	8.15	15.93	8.99	14.20	10.61
MARD-E			12.08	5.59	7.43	2.30	8.29	2.62
MARD-D			119.53	16.26	29.78	27.17	23.84	25.47
MARD-M			47.43	4.74	13.31	4.72	12.37	6.91

^a L. Gráfová, M. Pitoňák, J. Řezáč, P. Hobza, J. Chem. Theory Comput., 2010, 6, 2365-2376.

^b Interaction types: E, electrostatics-dominated; D, dispersion-dominated; M, mixed character.

^c Errors are calculated by (Ref. - Calc.) in kcal/mol.

^d Mean absolute deviation (MAD)

Table S17 Binding energies (kcal/mol) at the 2.0 R_e distorted geometries for the S22 data set: Errors with respect to the S22x5 reference data for the XYG3 and XYGJ-OS methods. Basis sets used are 6-311+G(d,p) (PP1) and 6-311+G(3df,2p) (PP2).

20.0.	Ref	Int.	B3LY	P/PP2 ^c	XY	G3 °	XYGJ-OS ^c	
2.0 Ke	S22x5 ^a	Type ^b	-	-D	PP1	PP2	PP1	PP2
Hydrogen bonded complexes (7)								
1. Ammonia_dimer (C _{2h})	0.355	Е	0.055	0.016	-0.044	0.009	-0.051	0.004
2. Water_dimer (C _s)	0.961	Е	0.054	-0.006	-0.206	-0.031	-0.220	-0.043
3. Formic_acid_dimer (C _{2h})	3.635	Е	0.264	-0.126	-0.024	0.001	-0.059	-0.018
4. Formamide_dimer (C _{2h})	3.514	Е	0.259	-0.043	-0.004	0.044	-0.051	0.009
5. Uracil_dimer_hb (C _{2h})	4.585	Е	0.429	-0.042	-0.130	0.093	-0.075	0.160
6. 2-pyridone_2-aminopyridine (C ₁)	3.258	Е	0.539	0.050	-0.151	0.083	-0.150	0.097
7. Adenine_Thymine_WC (C1)	2.592	Е	0.656	0.109	-0.135	0.122	-0.141	0.130
Complexes with predominant dispersi	on contribut	tion (8)						
8. Methane_dimer (D _{3d})	0.010	D	0.011	-0.002	0.009	0.001	0.009	0.002
9. Ethene_dimer (D _{2d})	0.029	М	0.030	0.001	0.018	0.010	0.019	0.013
10. Benzene_Methane (C ₃)	0.122	D	0.115	0.013	0.014	0.028	0.017	0.032
11. Benzene_dimer (C _{2h})	0.073	М	0.126	-0.005	-0.002	0.016	0.008	0.028
12. Pyrazine_dimer (C _s)	0.188	М	0.152	-0.003	-0.050	0.015	-0.032	0.035
13. Uracil_dimer_stack (C ₂)	0.695	М	0.122	-0.125	-0.196	-0.062	-0.150	-0.017
14. Indole_Benzene_stack (C1)	0.086	D	0.292	-0.010	-0.045	0.038	0.000	0.086
15. Adenine_Thymine_stack (C1)	0.923	М	0.311	-0.122	-0.300	-0.049	-0.250	-0.001
Mixed complexes (7)								
16. Ethene_Ethyne (C _{2v})	0.147	М	0.039	0.004	-0.014	-0.002	-0.011	0.003
17. Benzene_Water (C _s)	0.494	М	0.094	-0.013	-0.080	-0.025	-0.083	-0.027
18. Benzene_Ammonia (Cs)	0.277	М	0.116	0.012	-0.009	0.012	-0.010	0.013
19. Benzene_HCN (Cs)	0.849	М	0.146	-0.020	-0.115	-0.058	-0.107	-0.052
20. Benzene_dimer (C _{2v})	0.353	М	0.242	0.012	-0.133	0.002	-0.115	0.021
21. Indole_Benzene_T-shape (C1)	1.105	М	0.428	0.024	-0.164	0.015	-0.135	0.046
22. Phenol_dimer (C ₁)	1.379	М	0.590	0.088	-0.248	0.037	-0.229	0.067
MAD ^d -Tot			0.23	0.04	0.10	0.03	0.09	0.04
MAD-E			0.32	0.06	0.06	0.05	0.07	0.07
MAD-D			0.14	0.01	0.02	0.02	0.02	0.04
MAD-M			0.20	0.04	0.11	0.03	0.09	0.03
MARD ^e -Tot			58.70	5.48	21.01	8.95	18.09	13.81
MARD-E			12.43	2.34	6.73	2.34	7.44	2.53
MARD-D			180.91	12.90	50.31	26.52	33.85	49.69
MARD-M			55.15	5.45	22.01	8.41	20.37	11.41

^a L. Gráfová, M. Pitoňák, J. Řezáč, P. Hobza, J. Chem. Theory Comput., 2010, 6, 2365-2376.

^b Interaction types: E, electrostatics-dominated; D, dispersion-dominated; M, mixed character.

^c Errors are calculated by (Ref. - Calc.) in kcal/mol.

^d Mean absolute deviation (MAD)