Supporting Information Photoelectrochemical cells with surface embedded Mo-doped BiVO₄ into tungsten trioxide bilayer photoanode

Kan Zhang ^a, Xin-Jian Shi ^b, Jung Kyu Kim ^a, Jong Hyeok Park ^{a,b*}

^a SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Republic of Korea

^b School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Figure S1. FE-SEM image of (a) high modification of WO_3 photoanode, (b) and (c) 1 layered $BiV_{0.95}Mo_{0.05}O_4/WO_3$ photoanode, and (d) $BiVO_4/WO_3$ photoanode.

Figure S2. XRD patterns of pure BiVO₄ and BiVO₄/WO₃ photoanode.

Figure S3. Photocurrent intensity at 0.6 V of pure WO₃, 1:3 $BiVO_4/WO_3$, 1:3 $BiV_{0.95}Mo_{0.05}O_4/WO_3$ photoanodes with irradiation of 300 seconds.

Figure S4. (a) UV-vis absorption spectra of WO₃, BiVO₄ and $BiV_{0.95}Mo_{0.05}O_4$. The inset shows the optical band gap (Eg) of them calculated from Tauc's formula. (b) Photographs of BiVO₄ and $BiV_{0.95}Mo_{0.05}O_4$ suspension in PEG solution.

Figure S6. Voltage-photocurrent functions of pure WO₃ and 1:3 $BiV_{0.95}Mo_{0.05}O_4/WO_3$ photoanodes at potential region between -0.4 and 0.4 V.

Figure S6. Results of Chronoamperometry under closed circuit conditions at applied potential of 0.6 V.

Figure S7. Photocurrent intensity at 0.6 V of $BiVO_4$ and $BiV_{0.95}Mo_{0.05}O_4$ photoanodes.