Electronic Supplementary Information (ESI) available for:

Hunting for a maximum highly-energetic facet that interplays with spatial charge storage for enhanced catalytic activity

Jun Zhang,^{*a,c*} Liping Li,^{*b*} and Guangshe Li^{*a*}*

^{*a*} State Key Laboratory of Structural Chemistry, ^{*b*} Key Lab of Optoelectronic Materials Chemistry

and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,

Fuzhou 350002; ^c School of Chemistry and Chemical Engineering, Inner Mongolia University,

Hohhot 010021, People's Republic of China.

Fax: (+) 86-591-83714946 *E-mail:* guangshe@fjirsm.ac.cn

S1 XRD patterns of the rutile TiO_2 microspheres synthesized at 160 °C for different period of reaction time: (a) 1 h, (b) 1.5 h, (c) 2 h, (d) 2.5 h (e) 4 h and (f) 8 h. Vertical bars represent the standard diffraction data of bulk rutile TiO_2 . Symbol * represents the diffraction lines of internal standard nickel.

S2 Pore size as a function of the diameters of constructing nanowires within TiO_2 microspheres.

S3 Typical nitrogen adsorption and desorption isotherm curves for different diameters of the constructing nanowires of rutile TiO_2 microspheres.

S4 TG and DTG curve for a typical nanowires diameter of 4.2 nm for rutile TiO₂ microspheres.

S5 FT-IR spectra that illustrate the relative shifts of the vibration for Ti-O bonding with increasing the diameters of constructing nanowires within microspheres: (a) 4.2 nm, (b) 4.8 nm, (c) 6.2 nm, (b) 10.3 nm, and (b) 14.6 nm.

S6 Axis ratio c/a as a function of the diameters of constructing nanowires in the assembled microspheres.

S7 Enlarged UV-vis DRS of TiO_2 microspheres with different constructing nanowires.

S8 (a) Time-dependent absorption spectra of MO solution in the presence of microspheres assembled by TiO_2 nanowires with a diameter of 6.2 nm, and (b) photocatalytic activities when irradiated by UV light at 254 nm, as indicated by normalized concentration of methyl orange versus irradiation time in the presence of TiO_2 microspheres assembled by nanowires with given diameters.

S9 Photo-degradation curve of TiO_2 microsphere with a diameter of 6.2 nm constructing nanowires under different temperature.

S10 The photo degradation curves of MO in presence of TiO_2 microsphere with a constructing diameter of 6.2 nm irradiated by 300 nm UV-Vis light at the atmosphere of air or N₂.