Supporting Information

Modulating the assembly of organic dye molecules on titania nanocrystals via alkyl chain elongation for efficient mesoscopic cobalt solar cells

Yiming Cao,^{*a,b*} Ning Cai,^{*a,b*} Yinglin Wang,^{*a*} Renzhi Li,^{*a*} Yi Yuan^{*c*} and Peng Wang^{*a*}

^{*a*} State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. E-mail: renzhi.li@ciac.jl.cn; peng.wang@ciac.jl.cn

^b Graduate School, Chinese Academy of Sciences, Beijing, 100039, China

^c College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China. *E-mail: yi.yuan@hrbeu.edu.cn*

1. EXPERIMENTAL SECTION

1.1 Synthesis and characterization of C234 and C235 dye molecules

Scheme S1. Synthetic route of C234 (6a) and C235 $(6b)^a$

^{*a*}Reagents: (i) aniline, CuCl, 1,10-phenanthroline, KOH, toluene; (ii) I_2 , H_5IO_6 , EtOH; (iii) bis(pinacolato)diboron, Pd(dppf)Cl₂, KOAc, DMSO; (iv) 6-bromo-4,4-dihexyl-4*H*-cyclopenta[2,1-*b*:3,4-*b'*]dithiophene-2-carbaldehyde, palladium diacetate, potassium phosphate, 1,4-dioxane/water (5/1, *v/v*); (v) cyanoacetic acid, piperidine, CHCl₃.

The synthetic route of C234 and C235 is shown in Scheme S1 and the experimental details are presented as follows. All solvents and reagents, unless otherwise stated, were of analytical quality and used as received. 1-ethoxyl-4-iodobenzene (1a),^{S1} 1-(n-dodecyloxyl)-4-iodobenzene (1b)^{S2} and 6-bromo-4,4-dihexyl-4*H*-cyclopenta[2,1-*b*:3,4-*b'*]dithiophene-2-carbaldehyde^{S3} were synthesized according to the literature methods.

N,N-bis(4-ethoxyphenyl)aniline (2a). To a stirred solution of 1a (36.691 g, 147.90 mmol), aniline (5.510 g, 59.16 mmol), and 1,10-phenanthroline (2.132 g, 11.83 mmol) in toluene (115 mL) at 100 °C were added potassium hydroxide (26.556 g, 473.28 mmol) and cuprous chloride (1.168 g, 11.83 mmol) under argon. The reaction mixture was refluxed for 12 h and then water (80 mL) added. The crude product was extracted into dichloromethane, and the organic layer was washed with water and dried over anhydrous sodium sulfate. After removing solvent under reduced pressure, the residue was purified by column chromatography (ethyl acetate/petroleum ether 60–90 °C, 1/50, ν/ν) on silica gel to yield a yellow viscous liquid. Yield: 77 %. ¹H NMR (300 MHz, DMSO-*d*₆) δ : 7.15 (t, *J*=7.8 Hz, 2H), 6.95 (d, *J*=9.0 Hz, 4H), 6.86 (d, *J*=9.0 Hz, 4H), 6.80 (t, *J*=7.2 Hz, 1H), 6.75 (d, *J*=8.4 Hz, 2H), 3.96 (m, 4H), 1.29 (t, *J*=6.9 Hz, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 154.82, 148.41, 140.16, 129.02, 126.37, 120.16, 119.70, 115.36, 63.14, 14.68. MS (ESI) *m/z* calcd. for (C₂₂H₂₃NO₂): 333.2. Found: 334.5 ([M+H]⁺). Anal. Calcd. for C₂₂H₂₃NO₂: C, 79.25, H, 6.95, N, 4.20. Found: C, 79.16, H, 6.87, N, 4.11.

N,*N*-bis(4-dodecyloxyphenyl)aniline (2b). The same procedure as above (2a). White solid. Yield: 70 %. ¹H NMR (600 MHz, DMSO- d_6) δ : 7.16 (t, *J*=7.8 Hz, 2H), 6.96 (d, *J*=9.0 Hz, 4H), 6.87 (d, *J*=9.0 Hz, 4H), 6.82 (t, *J*=6.6 Hz, 1H), 6.77 (d, *J*=7.8 Hz, 2H), 3.92 (m, 4H), 1.68 (m, 4H), 1.39 (m, 4H), 1.29 (m, 32H), 0.85 (t, *J*=6.9 Hz, 6H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 155.29, 148.85, 140.97, 128.86, 126.39, 120.81, 120.39, 115.21, 68.27, 31.91, 29.66, 29.63, 29.59, 29.41, 29.37, 29.34, 26.08, 22.68, 14.10. MS (ESI) *m/z* calcd. for (C₄₂H₆₃NO₂): 613.5. Found: 614.7. ([M+H]⁺). Anal. Calcd. for C₄₂H₆₃NO₂: C, 82.16, H, 10.34, N, 2.28. Found: C, 82.04, H, 10.23, N, 2.17.

N,N-bis(4-ethoxyphenyl)-4-iodoaniline (3a). A suspended solution of 2a (3.500 g, 10.50 mmol), iodine (1.372 g, 5.40 mmol), and periodic acid (0.410 g, 1.80 mmol) in anhydrous ethanol (40 mL) was under argon for overnight reaction at 55 °C. The reaction mixture was cooled to room temperature and then saturated sodium subsulfite aqueous solution (30 mL) added. The crude product was extracted into chloroform, washed with water, and dried over anhydrous sodium sulfate. After removing solvent under reduced pressure, the residue was purified by column chromatography (ethyl acetate/petroleum ether 60–90 °C, 1/50, *v/v*) on silica gel to yield a colourless viscous liquid. Yield: 94 %. ¹H NMR (300 MHz, DMSO-*d*₆) δ : 7.42 (d, *J*=8.4 Hz, 2H), 6.99 (d, *J*=8.7 Hz, 4H), 6.87 (d, *J*=8.7 Hz, 4H), 6.52 (d, *J*=8.7 Hz, 2H), 3.97 (m, 4H), 1.29 (t, *J*=6.9 Hz, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 155.34, 148.35, 139.33, 137.40, 126.94, 120.94, 115.49, 81.60, 63.18, 39.92, 39.78, 39.64, 39.50, 39.36, 39.22, 39.08, 14.67. MS (ESI) *m/z* calcd. for (C₂₂H₂₂INO₂): 459.1. Found: 460.1 ([M+H]⁺). Anal. Calcd. for C₂₂H₂₂INO₂: C, 57.53, H, 4.83, N, 3.05. Found: C, 57.40, H, 4.75, N, 2.96.

N,*N*-bis(4-dodecyloxyphenyl)-4-iodoaniline (3b). The same procedure as above (3a). Colorless viscous liquid. Yield: 93 %. ¹H NMR (300 MHz, DMSO-*d*₆) δ: 7.42 (d, *J*=8.4 Hz, 2H), 6.99 (d, *J*=8.7 Hz, 4H), 6.87 (d, *J*=8.7 Hz, 4H), 6.52 (d, *J*=8.7 Hz, 2H), 3.97 (m, 4H), 1.29 (t, *J*=6.9 Hz, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 155.74, 148.68, 140.16, 137.60, 126.70, 122.13, 115.34, 81,72, 68.27, 31.91, 29.66, 29.63, 29.59, 29.58, 29.40, 29.34, 26.06, 22.68, 14.10. MS (ESI) *m/z* calcd. for (C₄₂H₆₂INO₂): 739.4. Found: 740.5 ([M+H]⁺). Anal. Calcd. for C₄₂H₆₂INO₂: C, 68.18, H, 8.45, N, 1.89. Found: C, 68.07, H, 8.32, N, 1.78.

4,4,5,5-tetramethyl-2-{4-[N,N-bis(4-ethoxyphenyl)amino]phenyl}-1,3,2-dioxaborolane (4a). A mixture of 3a (2.300 g, 5.01 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (1.335 g, 5.26 mmol), potassium acetate (1.474 g, 15.02 mmol), and Pd(dppf)Cl₂ (0.110 g, 0.15 mmol) in anhydrous dimethyl sulfoxide (20 mL) was stirred at 45 °C under argon for 12 h and then water (20 mL) added. The crude product was extracted into ethyl acetate, washed with water, and dried over anhydrous sodium sulfate. After removing solvent under reduced pressure, the residue was purified by column chromatography (ethyl acetate/petroleum ether 60–90 °C, 1/30, v/v) on silica gel to yield a white powder. Yield: 71 %. ¹H NMR (300 MHz, DMSO-*d*₆) δ : 7.42 (d, *J*=8.7 Hz, 2H), 7.02 (d, *J*=8.7 Hz, 4H), 6.89 (d, *J*=9.0 Hz, 4H), 6.64 (d, *J*=8.4 Hz, 2H), 3.98 (m, 4H), 1.30 (t, *J*=6.9 Hz, 6H), 1.23 (s, 12H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 155.52, 151.14, 139.18, 135.59, 127.44, 116.83, 115.45, 83.07, 63.15, 24.60, 14.65. MS (ESI) *m/z* calcd. for (C₂₈H₃₄BNO₄): 459.3. Found: 460.5 ([M+H]⁺). Anal. Calcd. for C₂₈H₃₄BNO₄: C, 73.21, H, 7.46, N, 3.05. Found: C, 73.15, H, 7.38, N, 2.95.

4,4,5,5-tetramethyl-2-{4-[*N*,*N*-**bis(4-dodecyloxyphenyl)amino]phenyl}-1,3,2-dioxaborolane (4b)**. The same procedure as above (**4a**). White powder. Yield: 71 %. ¹H NMR (300 MHz, DMSO-*d*₆) δ: 7.44 (d, *J*=8.4 Hz, 2H), 7.03 (d, *J*=9.0 Hz, 4H), 6.91 (d, *J*=9.0 Hz, 4H), 6.66 (d, *J*=9.0 Hz, 2H), 3.93 (t, *J*=6.6 Hz, 4H), 1.69 (m, 4H), 1.39(m, 4H), 1.25(m, 44H), 0.85 (t, *J*=6.8 Hz, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 155.73, 151.38, 140.12, 135.65, 127.04, 118.44, 115.19, 83.29, 68.17, 31.85, 29.59, 29.56, 29.52, 29.34, 29.28, 26.01, 24.76, 22.61, 14.05. MS (ESI) *m/z* calcd. for (C₄₈H₇₄BNO₄): 739.6. Found: 740.8. ([M+H]⁺). Anal. Calcd. for C₄₈H₇₄BNO₄: C,

77.92, H, 10.08, N, 1.89. Found: C, 77.83, H, 9.97, N, 1.77.

6-{4-[*N***,***N***-bis(4-ethoxyphenyl)amino]phenyl}-4,4-dihexyl-4***H***-cyclopenta[2,1-***b***:3,4-***b***']dithiophene-2-carbaldehyde (5a). To a suspended solution of 6-bromo-4,4-dihexyl-4***H***-cyclopenta[2,1-***b***:3,4-***b***']dithiophene-2-carbaldehyde (0.270 g, 0.60 mmol), 4a** (0.301 g, 0.66 mmol), potassium phosphate (1.900 g, 8.95 mmol), Sphos (0.007 g, 0.02 mmol) and 1,4-dioxane/water (5/1, ν/ν , 6 mL) was added palladium diacetate (0.003 g, 0.01 mmol). The reaction mixture was heated up to 40 °C and react for 2 h. After cooled to room temperature, 10 mL water was added. The crude compound was extracted into ethyl acetate, washed with brine and water, and dried over anhydrous sodium sulfate. After removing solvent under reduced pressure, the residue was purified by column chromatography (ethyl acetate/petroleum ether 60–90 °C, 1/40, ν/ν) on silica gel to yield an orange solid. Yield: 96 %. ¹H NMR (600 MHz, DMSO-*d*₆) δ : 9.80 (s, 1H), 7.95 (s, 1H), 7.50 (d, *J*=8.4 Hz, 2H), 7.44 (s, 1H), 7.03 (d, *J*=9.0 Hz, 4H), 6.91 (d, *J*=9.0 Hz, 4H), 6.77 (d, *J*=8.4 Hz, 2H), 4.00 (m, 4H), 1.90 (m, 4H), 1.32 (t, *J*=7.2 Hz, 6H), 1.12 (m, 12H), 0.87 (m, 4H), 0.76 (t, *J*=6.9 Hz, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 183.13, 163.65, 157.16, 155.28, 149.08, 148.33, 146.67, 142.48, 139.39, 132.28, 126.82, 126.06, 125.35, 119.08, 116.79, 115.43, 63.16, 53.55, 36.75, 30.90, 28.88, 23.96, 21.93, 14.65, 13.76. MS (ESI) *m/z* calcd. for (C₄₄H₅₁NO₃S₂): 705.3. Found: 706.4 ([M+H]⁺). Anal. Calcd. for C₄₄H₅₁NO₅S₂: C, 74.85, H, 7.28, N, 1.98. Found: C, 74.73, H, 7.16, N, 1.87.

6-{4-[*N*,*N*-bis(4-ethoxyphenyl)amino]phenyl}-4,4-dihexyl-4*H*-cyclopenta[2,1-*b*:3,4-*b'*]dithiophene-2-carbaldehyde (5b). The same procedure as above (5a). Orange solid. Yield: 95 %. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 9.81 (s, 1H), 7.97 (s, 1H), 7.51 (d, *J*=9.0 Hz, 2H), 7.44 (s, 1H), 7.03 (d, *J*=9.0 Hz, 4H), 6.92 (d, *J*=9.0 Hz, 4H), 6.78 (d, *J*=9.0 Hz, 2H), 3.94 (t, *J*=6.6 Hz, 4H), 1.91 (m, 4H), 1.69 (m, 4H), 1.40 (m, 4H), 1.27 (m, 30H), 1.11 (m, 14H), 0.86 (m, 10H), 0.77 (t, *J*=6.9 Hz, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 182.28, 163.64, 157.15, 155.80, 150.07, 148.86, 148.43, 142.59, 140.15, 133.25, 126.79, 126.22, 126.13, 120.15, 116.09, 115.34, 68.28, 54.02, 37.77, 31.91, 31.96, 31.56, 29.65, 29.62, 29.59, 29.40, 29.34, 29.29, 26.07, 24.53, 22.68, 22.58, 14.10, 13.99. MS (ESI) *m/z* calcd. for (C₆₄H₉₁NO₃S₂): 985.6. Found: 986.7 ([M+H]⁺). Anal. Calcd. for C₆₄H₉₁NO₃S₂: C, 77.92, H, 9.30, N, 1.42. Found: C, 77.80, H, 9.21, N, 1.32.

2-cyano-3-{6-{4-[N,N-bis(4-ethoxyphenyl)amino]phenyl}-4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2-yl}acrylic

acid (6a, C234). To a stirred solution of 5a (0.305 g, 0.50 mmol) and cyanoacetic acid (0.126 g, 1.49 mmol) dissolved in chloroform (30 mL) was added piperidine (0.295 g, 3.47 mmol). The reaction mixture was refluxed under argon for 18 h and then acidified with 2 M hydrochloric acid aqueous solution. The crude product was extracted into chloroform, washed with water, and dried over anhydrous sodium sulfate. After solvent was removed under reduced pressure, the residue was purified by flash chromatography with chloroform and methanol/chloroform (1:10, v/v) in turn as the eluent to yield a purple powder. Yield: 89%. ¹H NMR (600 MHz, DMSO- d_6) δ : 13.35 (s, 1H), 8.41 (s, 1H), 7.93 (s, 1H), 7.53 (d, *J*=9.0 Hz, 2H), 7.48 (s, 1H), 7.05 (d, *J*=9.0 Hz, 4H), 6.92 (d, *J*=9.0 Hz, 4H), 6.78 (d, *J*=8.4 Hz, 2H), 4.01 (m, 4H), 1.88 (m, 4H), 1.33 (t, *J*=6.9 Hz, 6H), 1.13 (m, 12H), 0.89 (m, 4H), 0.77 (t, *J*=6.9 Hz, 6H). ¹³C NMR(150 MHz, DMSO- d_6) δ : 164.43, 164.22, 157.15, 155.36, 150.28, 148.94, 148.52, 147.08, 139.33, 135.45, 133.14, 132.52, 126.95, 126.20,

125.21, 118.93, 117.38, 116.87, 115.47, 93.29, 63.18, 53.34, 36.76, 30.89, 28.85, 23.97, 21.92, 14.66, 13.78. HR-MS (ESI) *m/z* calcd. for (C₄₇H₅₂N₂O₄S₂): 772.33685. Found: 771.32578 ([M–H]⁻). Anal. Calcd. for C₄₇H₅₂N₂O₄S₂: C, 73.02, H, 6.78, N, 3.62. Found: C, 72.91, H, 6.64, N, 3.54.

2-cyano-3-{6-{4-[*N*,*N*-bis(4-dodecyloxyphenyl)amino]phenyl}-4,4-dihexyl-4*H*-cyclopenta[2,1-*b*:3,4-*b*']dithiophene-2-yl}acryli c acid (6b, C235). The same procedure as above (6a). Purple powder. Yield: 91 %. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 13.35 (s, 1H), 8.41 (s, 1H), 7.93 (s, 1H), 7.52 (d, *J*=7.8 Hz, 2H), 7.48 (s, 1H), 7.03 (d, *J*=8.4 Hz, 4H), 6.92 (d, *J*=8.4 Hz, 4H), 6.78 (d, *J*=9.0 Hz, 2H), 3.94 (t, *J*=6.0 Hz, 4H), 1.88 (m, 4H), 1.70 (m, 4H), 1.40 (m, 4H), 1.28 (m, 30H), 1.13 (m, 14H), 0.85 (m, 10H), 0.77 (t, *J*=6.9 Hz, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 168.78, 165.21, 158.20, 155.92, 152.31, 152.04, 149.22, 148.01, 139.99, 135.53, 133.28, 126.91, 126.40, 125.72, 119.92, 117.06, 116.08, 115.38, 91.34, 68.30, 54.15, 37.82, 31.91, 31.54, 29.66, 29.63, 29.59, 29.41, 29.34, 26.08, 24.53, 22.68, 22.57, 14.11, 13.99. HR-MS (ESI) *m/z* calcd. for (C₆₇H₉₂N₂O₄S₂): 1052.64985. Found: 1051.65864 ([M–H][¬]). Anal. Calcd. for C₆₇H₉₂N₂O₄S₂: C, 76.38, H, 8.80, N, 2.66. Found: C, 76.25, H, 8.69, N, 2.54.

1.2 References

(S1) Y. Hatanaka, K.-I. Goda and T. Hiyama, J. Organomet. Chem., 1994, 465, 97.

(S2) H. Yamanishi, I. Tomita, K. Ohta and T. Endo, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 2001, 369, 47.

(S3) R. Li, J. Liu, N. Cai, M. Zhang and P. Wang, J. Phys. Chem. B, 2010, 114, 4461.

2. ADDITIONAL DATA

Table S1 The intensities (*I*) of $Ti2p_{3/2}$ signal originating from samples of TiO_2 , C224/TiO₂, C220/TiO₂, C234/TiO₂ and C235/TiO₂

sample	I/a.u.	d^a /Å
TiO ₂	27999	
C224/TiO ₂	18054	14
C220/TiO ₂	13828	22
C234/TiO ₂	19158	12
C235/TiO ₂	13676	23

^{*a*} The mean thickness of organic coatings on titania surface.