Revised Manuscript ID: CP-ART-05-2012-041424

Supporting Information

Some Novel Molecular Frameworks Involving Representative Elements

Arindam Chakraborty^a, Sateesh Bandaru^a, Ranjita Das^a, Soma Duley^a, Santanab Giri^b, Koushik Goswami^a, Sukanta Mondal^a, Sudip Pan^a, Soumya Sen^a and Pratim K. Chattaraj^{a,*}

^a Department of Chemistry and Center for Theoretical Studies Indian Institute of Technology, Kharagpur – 721 302, India

^bCIMAT, Universidad de Chile & QTC, Pontificia Universidad Católica de Chile, Santiago,Chile ^{*}Corresponding author: <u>pkc@chem.iitkgp.ernet.in</u>

Table S1: Point group, bond length (Å) and bond angle (°) of $1,5-C_2B_3H_5$, $1,6-C_2B_4H_6$ and $1,7-C_2B_5H_7$ closo carborane units optimized at M052X/6-31G(d) level of theory

Molecule	Point Group	Bond le	ength (Å)	Bond a	ngle (°)
$C_2B_3H_5$	D_{3h}	C-H	1.074	<hcb< td=""><td>136.416</td></hcb<>	136.416
		C-B	1.554	<cbb< td=""><td>53.334</td></cbb<>	53.334
		B-B	1.855	<bbb< td=""><td>60.003</td></bbb<>	60.003
		B-H	1.180	<hbb< td=""><td>150.045</td></hbb<>	150.045
$C_2B_4H_6$	D_{4h}	C-H	1.075	<hcb< td=""><td>131.787</td></hcb<>	131.787
		C-B	1.619	<cbb< td=""><td>58.212</td></cbb<>	58.212
		B-B	1.706	<bbb< td=""><td>90.026</td></bbb<>	90.026
		B-H	1.174	<hbb< td=""><td>134.970</td></hbb<>	134.970
$C_2B_5H_7$	D_{5h}	C-H	1.080	<hcb< td=""><td>142.934</td></hcb<>	142.934
		C-B	1.730	<cbb< td=""><td>62.027</td></cbb<>	62.027
		B-B	1.624	<bbb< td=""><td>107.985</td></bbb<>	107.985
		B-H	1.080	<hbb< td=""><td>126.075</td></hbb<>	126.075

Single stranded	Point Group	Bond l	ength (Å)	Bond a	ngle (°)
structures					
$-C_2B_3H_3-$	D_{3h}	C-H	1.074	<hcb< td=""><td>136.428</td></hcb<>	136.428
		C-B	1.550	<cbb< td=""><td>53.565</td></cbb<>	53.565
		B-B	1.851	<bbb< td=""><td>59.997</td></bbb<>	59.997
		B-H	1.186	<hbb< td=""><td>149.996</td></hbb<>	149.996
		C-C	1.457	<bcc< td=""><td>136.690</td></bcc<>	136.690
$-C_2B_4H_4-$	D_{4h}	C-H	1.077	<hcb< td=""><td>131.725</td></hcb<>	131.725
		C-B	1.622	<cbb< td=""><td>58.240</td></cbb<>	58.240
		B-B	1.708	<bbb< td=""><td>89.995</td></bbb<>	89.995
		B-H	1.181	<hbb< td=""><td>135.044</td></hbb<>	135.044
		C-C	1.468	<bcc< td=""><td>131.881</td></bcc<>	131.881
-C ₂ B ₅ H ₅ -	C _{2h}	C-H	1.081	<hcb< td=""><td>126.840</td></hcb<>	126.840
		C-B	1.735	<cbb< td=""><td>62.008</td></cbb<>	62.008
		B-B	1.629	<bbb< td=""><td>107.998</td></bbb<>	107.998
		B-H	1.184	<hbb< td=""><td>126.013</td></hbb<>	126.013
		C-C	1.481	<bcc< td=""><td>127.024</td></bcc<>	127.024

Table S2: Point group, bond length (Å) and bond angle (°) of single stranded polymer of 1,5- $C_2B_3H_5$, 1,6- $C_2B_4H_6$ and 1,7- $C_2B_5H_7$ closo carboranes studied at M052X/6-31G(d) level

Double stranded	Point Group	Bond leng	gth (Å)	Bond ang	gle (°)
structures			1.051		10 4 4 4 4
		C-H	1.0'/4	<hcb< td=""><td>136.646</td></hcb<>	136.646
		C-B	1.551	<cbb]<sub>intra</cbb]<sub>	53.386
Helical	D_2	B-B] _{intra}	1.845	<bbb< td=""><td>60.150</td></bbb<>	60.150
$-C_2B_3H_3-$		B-B] _{inter}	1.684	<hbb< td=""><td>150.688</td></hbb<>	150.688
		B-H	1.186	<bcc< td=""><td>138.943</td></bcc<>	138.943
		C-C	1.456	<cbb]<sub>inter</cbb]<sub>	133.464
		C-H	1.077	<hcb< td=""><td>131.589</td></hcb<>	131.589
		C-B	1.623	<cbb]<sub>intra</cbb]<sub>	58.334
Linear	D_{2h}	B-B] _{intra}	1.708	<bbb< td=""><td>90.383</td></bbb<>	90.383
$-C_2B_4H_4-$		B-B] _{inter}	1.666	<hbb< td=""><td>135.095</td></hbb<>	135.095
		B-H	1.181	<bcc< td=""><td>131.878</td></bcc<>	131.878
		C-C	1.468	<cbb]<sub>inter</cbb]<sub>	138.386
		C-H	1.081	<hcb< td=""><td>126.304</td></hcb<>	126.304
		C-B	1.739	<cbb]<sub>intra</cbb]<sub>	61.511
Helical	D_2	B-B] _{intra}	1.630	<bbb< td=""><td>107.829</td></bbb<>	107.829
$-C_2B_5H_5-$		B-B] _{inter}	1.678	<hbb< td=""><td>125.892</td></hbb<>	125.892
		B-H	1.184	<bcc< td=""><td>130.681</td></bcc<>	130.681
		C-C	1.481	<cbb]<sub>inter</cbb]<sub>	143.110

Table S3: Point group, bond length (Å) and bond angle (°) of double stranded polymer of 1,5- $C_2B_3H_5$, 1,6- $C_2B_4H_6$ and 1,7- $C_2B_5H_7$ closo carboranes studied at M052X/6-31G(d) level

Table S4: The total energy (E, au), electronegativity (χ , eV), hardness(η , eV) and electrophilicity (ω , eV) of 1,5-C₂B₃H₅, 1,6-C₂B₄H₆ and 1,7-C₂B₅H₇ closo carboranes and their single and double stranded analogues at M052X/6-31G(d) level

Molecule	E	χ	η	ω
$C_2B_3H_5$	-153.78284	4.738	10.418	1.078
$C_2B_4H_6$	-179.25755	3.857	9.948	0.748
$C_2B_5H_7$	-204.63966	4.086	9.527	0.876
Single stranded				
$-C_2B_3H_3-$	-1831.96934	4.090	7.816	1.070
Single stranded				
$-C_2B_4H_4-$	-2137.60161	4.342	9.005	1.047
Single stranded				
$-C_2B_5H_5-$	-2442.11988	4.304	8.809	1.051
Double stranded				
Helical -C ₂ B ₃ H ₃ -	-3649.84411	4.390	6.245	1.543

_

Double stranded				
Linear -C ₂ B ₄ H ₄ -	-4261.15781	4.356	7.724	1.228
Double stranded				
Helical -C ₂ B ₅ H ₅ -	-4870.20185	4.292	8.133	1.133

Table S5: Point group, bond length (Å) and bond angle (°) of carborane cages studied at M052X/6-311+G(d,p) level.

Molecule	Point group	Bond le	ength (Å)	Bond a	ngle (°)
$(C_{12}B_6H_6)_2H_6$	D_{3h}	C-C	1.40, 1.54	<ccc< td=""><td>117.4, 121.9,</td></ccc<>	117.4, 121.9,
					113.5, 111.7
		C-B	1.56, 1.60	<ccb< td=""><td>96.9, 98.5</td></ccb<>	96.9, 98.5
		C-H	1.08, 1.10	<cch< td=""><td>116.3, 120.4</td></cch<>	116.3, 120.4
		B-B	1.78	<cbc< td=""><td>110.5</td></cbc<>	110.5
		B-H	1.34	<bcb< td=""><td>85.3, 123.3</td></bcb<>	85.3, 123.3
				<cbb< td=""><td>132.3, 114.3</td></cbb<>	132.3, 114.3
				<bhb< td=""><td>83.6</td></bhb<>	83.6
$(C_{12}B_6H_6)_2H_{12}$	D_{6h}	C-C	1.34, 1.54	<ccc< td=""><td>120.0, 114.9</td></ccc<>	120.0, 114.9
		C-B	1.62	<ccb< td=""><td>95.3</td></ccb<>	95.3
		C-H	1.09	<cch< td=""><td>114.7</td></cch<>	114.7
		B-B	1.80	<cbc< td=""><td>112.3</td></cbc<>	112.3
		B-H	1.35	<bcb< td=""><td>114.1</td></bcb<>	114.1
				<cbb< td=""><td>120.2</td></cbb<>	120.2
				<bhb< td=""><td>83.4, 87.9</td></bhb<>	83.4, 87.9

Molecule	E	χ	η	ω
$(C_{12}B_6H_6)_2H_6$	-1223.30970	4.141	6.125	1.400
$(C_{12}B_6H_6)_2H_{12}$	-1227.07663	3.789	7.141	1.005

Table S6: The total energy (E, au), electronegativity (χ , eV), hardness(η , eV) and electrophilicity (ω , eV) of carborane cages studied at M052X/6-311+G(d,p) level

Table S7: The molecular point groups and the important geometrical parameters (bond lengths and inter-bond angles) of the hydrogen-bound carbon-nitrogen cages at M052X/6-31G(d,p) level.

Molecule	Point Group	Bond le	ength (Å)	Bond	angle (°)
C ₁₂ N ₆	C_{6v}	C-C	1.38, 1.51	<ccc< td=""><td>120</td></ccc<>	120
		C-N	1.32, 1.40	<cnc< td=""><td>102.1</td></cnc<>	102.1
				<ncn< td=""><td>123.7</td></ncn<>	123.7
$C_{12}N_{6}H_{12}$	C_{6v}	C-C	1.38, 1.51	<ccc< td=""><td>120</td></ccc<>	120
		C-N	1.47	<cnc< td=""><td>112.7</td></cnc<>	112.7
		C-H	1.10	<ncn< td=""><td>117.2</td></ncn<>	117.2
		N-H	1.01	<cch< td=""><td>115.8</td></cch<>	115.8
				<cnh< td=""><td>112.7</td></cnh<>	112.7
$C_{12}N_{6}H_{18}$	C_2	C-C	1.54, 1.59,	<ccc< td=""><td>119.7, 119.3,</td></ccc<>	119.7, 119.3,
			1.55		119.7
		C-N	1.45, 1.46,	<cnc< td=""><td>107.6, 112.3,</td></cnc<>	107.6, 112.3,
			1.43, 1.44		106.9
		C-H	1.09, 1.10	<ncn< td=""><td>114.1, 114.8,</td></ncn<>	114.1, 114.8,
					111.5
				<cch< td=""><td>108.0, 108.7,</td></cch<>	108.0, 108.7,
					110.3, 111.7
		N-H	1.00, 1.01	<cnh< td=""><td>108.9, 112.1,</td></cnh<>	108.9, 112.1,
					109.1
				<nch< td=""><td>109.1, 111.9,</td></nch<>	109.1, 111.9,
					109.9

Moleucle	Е	χ	η	ω
C ₁₂ N ₆	-785.32969	5.834	5.183	3.283
$C_{12}N_{6}H_{12}$	-792.81451	3.417	7.482	0.780
$C_{12}N_{6}H_{18}$	-796.54640	1.855	9.241	0.186

Table S8: The total energy (E, au), electronegativity (χ , eV), hardness(η , eV) and electrophilicity (ω , eV) of carbon-nitrogen cages studied at M052X/6-31G(d,p) level

Table S9: Different five membered star like clusters, their corresponding point groups, total energies (E, au) at B3LYP/6-311++G(d,p), MP2/6-311++G(d,p) and M052X/6-311++G(d,p) levels of theory and electronegativity (χ , eV), hardness (η , eV). electrophilicity (ω , eV) at B3LYP/6-311++G(d,p) level of theory.

C ₄ OLi ₅			L(1011 L)	L(WI052A)	X	Ц	ω
C_4OL_{15}			0 (1 0 1 0 0 7			2 (2)	0.674
$D_{1} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$		-265.28307	-264.31007	-265.24555	2.115	3.420	0.654
Pentalithio furan	C_{2V}						
Star $(^2A_1)$		0 (78.9)	1 (115.6i)	0 (62.8)			
C ₄ OLi ₅		-265.28306	-264.36329	-265.24555			
Pentalithio furan	C_1				2.113	3.415	0.654
Star (^{2}A)		0 (76.7)	0 (47.4)	0 (64.4)			
C ₄ NLi ₅		-244.82603	-243.94655	-244.80492			
Pentalithio pyrrole	C_{2V}				2.637	4.607	0.754
star $(^{1}A_{1})$		0 (94.0)	0 (83.0)	0 (88.4)			
C ₃ NOLi ₅		-281.95625	-280.92982	-281.91721			
Pentalithio oxazole	C_s				2.355	2.585	1.073
star $(^{1}A')$		0 (38.7)	2 (203.4i)	0 (39.5)			
C ₃ NOLi ₅		-281.95624	-281.00776	-281.91569			
Pentalithio oxazole	C_1				2.356	2.585	1.073
star (^{1}A)		0(37.0)	0(29.8)	1(64.0i)			
$C_{3}N_{2}Li_{5}(1,2)$		-261.51600	-260.60589	-261.47911			
Pentalithio pyrazole	C_{2v}				2.060	3.123	0.679
star $({}^{2}A_{1})$	21	0(92.4)	0 (76.7)	0(83.8)			
$C_{3}N_{2}Li_{5}(1,3)$		-261.53937	-260.58184	-261.50207			
Pentalithio imidazole	C_{2v}				1.957	2.820	0.679
star $(^{2}A_{1})$	21	0 (103.9)	1 (179.2i)	0 (93.1)			
$C_{3}N_{2}Li_{5}(1.3)$		-261.53937	-260.62498	-261.50207			
Pentalithio imidazole	C				1.957	2.820	0.679
star (² A')	- 3	0 (104.4)	0 (76.7)	0 (93.6)	2.701	1.010	5.077
$\begin{array}{c} C_4 OLi_5 \\ Pentalithio furan \\ Star (^2A) \\ C_4 NLi_5 \\ Pentalithio pyrrole \\ star (^1A_1) \\ C_3 NOLi_5 \\ Pentalithio oxazole \\ star (^1A') \\ C_3 NOLi_5 \\ Pentalithio oxazole \\ star (^1A) \\ C_3 NOLi_5 \\ Pentalithio pyrazole \\ star (^1A) \\ C_3 N_2 Li_5 (1,2) \\ Pentalithio pyrazole \\ star (^2A_1) \\ C_3 N_2 Li_5 (1,3) \\ Pentalithio imidazole \\ star (^2A_1) \\ C_3 N_2 Li_5 (1,3) \\ Pentalithio imidazole \\ star (^2A_1) \\ C_3 N_2 Li_5 (1,3) \\ Pentalithio imidazole \\ star (^2A') \\ \end{array}$	C_1 C_{2V} C_s C_1 C_{2v} C_{2v} C_{2v}	-265.28306 0 (76.7) -244.82603 0 (94.0) -281.95625 0 (38.7) -281.95624 0(37.0) -261.51600 0(92.4) -261.53937 0 (103.9) -261.53937 0 (104.4)	-264.36329 0 (47.4) -243.94655 0 (83.0) -280.92982 2 (203.4i) -281.00776 0(29.8) -260.60589 0 (76.7) -260.58184 1 (179.2i) -260.62498 0 (76.7)	-265.24555 0 (64.4) -244.80492 0 (88.4) -281.91721 0 (39.5) -281.91569 1(64.0i) -261.47911 0(83.8) -261.50207 0 (93.1) -261.50207 0 (93.6)	 2.113 2.637 2.355 2.356 2.060 1.957 1.957 	 3.415 4.607 2.585 2.585 3.123 2.820 2.820 	0 0 1 1 0 0 0

$C_2N_3Li_5(1,2,3)$		-278.16264	-277.13863	-278.12381			
Pentalithio-1,2,3-	C_{2v}				2.298	2.746	0.962
triazole star $({}^{1}A_{1})$		0(52.3)	0(85.7)	1(33i)			
C ₂ N ₃ Li ₅ (1,2,3)		-278.16262	-277.23211	-278.12458			
Pentalithio-1,2,3-	C_1						
triazole star (¹ A)		0(50.4)	0 (28.8)	0 (17.0)	2.297	2.747	0.961
C ₂ N ₃ Li ₅ (1,2,4)		-278.20008	-277.26036	-278.16131			
Pentalithio-1,2,4-	C_s				2.411	2.576	1.128
triazole star (¹ A')		0 (58.5)	0 (29.3)	1 (74.6i)			
C ₂ N ₃ Li ₅ (1,2,4)	C_1	-278.19811	-277.26607	-278.17225			
Pentalithio-1,2,4-							
triazole star (¹ A)		0 (121.3)	0 (109.3)	0 (130.7)	2.279	3.464	0.750
C ₄ PLi ₅		-531.42773	-530.16639	-531.39198			
Pentalithio phosphole	C_{2v}				2.712	4.760	0.773
star $(^{1}A_{1})$		0 (55.6)	1 (31.9i)	0 (60.5)			
C ₄ PLi ₅		-531.42773	-530.16640	-531.39198			
Pentalithio phosphole	C_s				2.712	4.760	0.773
star $(^{1}A')$		0(55.6)	0(37.8)	0 (60.5)			
C ₃ PNLi ₅ (1,2)		-548.12955	-546.78060	-548.07841			
Pentalithio-1,2- aza	C_s				2.218	3.504	0.702
phosphole star (² A')		0 (10.1)	2 (136.8i)	1(43.9i)			
C ₃ PNLi ₅ (1,3)		-548.12796	-546.78509	-548.02958			
Pentalithio-1,3- aza	C_s				2.089	3.055	0.714
phosphole star (² A')		0 (48.7)	2 (160.6i)	2(194.4i)			
C ₄ SLi ₅		-588.25880	-586.89782	-588.16211			
Pentalithio thiophene	C_{2v}				2.036	2.774	0.747
Star $(^{2}A_{1})$		1 (117.3i)	3 (114.1i)	3 (150i)			
C ₄ SLi ₅		-588.28082	-586.99177	-588.23880			
Pentalithio thiophene	C_1				2.298	3.564	0.741
Star (^{2}A)		0 (87.0)	0 (78.2)	0 (79.4)			

[Number of imaginary frequency (NIMAG) and ν_{min} in $cm^{\text{-1}}(\text{in bracket})$ is given below the total energy.]

Table S10: Different six membered star like clusters, their corresponding point groups, total energies (E, au) at B3LYP/6-311++G(d,p), MP2/6-311++G(d,p) and M052X/6-311++G(d,p) levels of theory and electronegativity (χ ,eV), hardness (η , eV). electrophilicity (ω , eV) at B3LYP/6-311++G(d,p) level of theory.

Clusters	PG	E (B3LYP)	E (MP2)	E (M052X)	χ	η	ω
		-234.05493	-a-	-234.02191			
B ₃ C ₃ Li ₆	C_s				2.010	3.075	0.657
⁽² A')		0 (69.1)		0 (50.4)			
B ₃ N ₃ Li ₆		-284.24255	-283.18754	-284.21065			
(Hexalithio	D_{3h}				2.398	3.708	0.775
borazine star)		0 (50.4)	0 (32.7)	0 (35.7)			
(¹ A ₁ ')							
B ₃ O ₃ Li ₆		-345.65259	-344.50705				
(Hexalithio	C_1			-a-	2.646	4.863	0.720
boroxine star)		0 (45.0)	0 (38.8)				
(¹ A)							
$C_4N_2Li_6$							
(Hexalithio	C_{2V}	-307.10288	-306.01090	-307.05580			
pyridazine star)					2.175	2.671	0.886
$(^{1}A_{1})$		0 (24.3)	0 (68.1)	0 (54.1)			
$C_4N_2Li_6$							
(Hexalithio	C_{2V}	-307.13555	-306.03965	-307.08962			
pyrimidine					2.275	2.626	0.986
star) $(^{1}A_{1})$		0 (92.9)	0 (77.1)	0 (85.7)			
$C_4N_2Li_6$							
(Hexalithio	D_{2h}	-307.09138	-306.00253	-307.05896			
pyrazine star)					2.046	1.007	2.079
$(^{1}A_{g})$		2 (138.2i)	3 (247.8i)	1 (77.5i)			
$C_4N_2Li_6$			-306.02802	-307.07624	2.300	2.502	1.057
(Hexalithio	C_{2V}	-307.12553					

pyrazine star)		0 (60.3)	2 (47.1i)	
$({}^{1}A_{1})$	0 (86.3)			

[Number of imaginary frequency (NIMAG) and ν_{min} in $cm^{\text{-1}}(\text{in bracket})$ is given below the total energy.]

Table S11: The NICS values (in ppm) of different five-membered star like clusters at B3LYP/6-311++G(d,p) level of theory.

Clusters	PG				NICS			
		0	0.5	1.0	1.5	2.0	2.5	3.0
C ₄ OLi ₅								
Pentalithio furan	C_{2V}	-6.233	-9.296	-9.675	-6.770	-4.207	-2.626	-1.703
star								
C ₄ OLi ₅								
Pentalithio furan	C_1	-6.235	-9.314	-9.690	-6.777	-4.208	-2.625	-1.703
star								
C_4NL_{15}	C	6.006	10.004	10 70 4	7 420		0.014	1 000
Pentalithio pyrrole	C_{2V}	-6.926	-10.284	-10.724	-7.430	-4.555	-2.814	-1.809
star								
C3NOLI5	C	11 200	11096	12 097	0.142	6 05 1	1 056	2 7 9 2
remainino oxazoie	C_{s}	-11.600	-14.080	-12.967	-9.145	-0.031	-4.030	-2.765
C ₂ NOL i _c								
Pentalithio oxazole	\mathbf{C}_1	-11.835	-14 528	-13.022	-9 097	-6.047	-4.077	-2.807
star	U1	11.000	111020	10:022	2.021	0.017	1.077	2.007
C ₃ N ₂ Li ₅								
Pentalithio pyrazole	C_{2v}	-5.886	-10.768	-12.124	-8.680	-5.476	-3.436	-2.231
star								
$C_3N_2Li_5$								
Pentalithio imidazole	C_{2v}	-6.395	-10.921	-11.95	0 -8.508	-5.462	-3.543	-2.371
star								
$C_2N_3Li_5(1,2,3)$								
Pentalithio-1,2,3-	C_{2v}	-12.008	-16.474	-16.274	-11.382	-7.342	-4.809	-3.253
triazole star								
$C_2N_3L_{15}(1,2,3)$	C	10 0 40	1 < 000	16 600	11 (70		1050	2 25 4
Pentalithio-1,2,3-	C_1	-12.048	-16.889	-16.628	-11.652	-/.54/	-4.956	-3.354
$C N L_{2}^{2} (1.2.4)$								
$C_{2}N_{3}LI_{5}(1,2,4)$ Dentalithic 1.2.4	C	11 004	15 633	15 061	10 534	6 806	4 602	3 1 5 8
triazole star	C_{s}	-11.904	-15.055	-15.001	-10.554	-0.890	-4.002	-3.138
$C_2N_2L_{15}(124)$								
Pentalithio-1,2,4-	C_1	-16.826	-15.218	-12.52	-8.016	5 -4.77	4 -2.926	-1.885

triazole star								
C_4PLi_5								
Pentalithio phosphole	C_{2v}	-11.064	-12.624	-11.872	-8.420	-5.377	-3.419	-2.233
star								
C ₃ PNLi ₅ (1,2)								
Pentalithio-1,2- aza	C_s	-10.396	-12.674	-12.343	-8.910	-5.806	-3.735	-2.441
phosphole star								
$C_3PNLi_5(1,3)$								
Pentalithio-1,3- aza	C_s	-10.042	-12.083	-12.898	-9.487	-6.270	-4.071	-2.686
phosphole star								
C_4SLi_5								
Pentalithio thiophene	C_{2v}	-12.166	-13.565	-12.306	-8.552	-5.417	-3.433	-2.236
star								
C ₄ SLi ₅	C_1	-10.285	-12.849	-12.632	-8.868	-5.590	-3.522	-2.290
Pentalithio thiophene								
star								

Table S12: The NICS values (in ppm) of different six-membered star like clusters at B3LYP/6-311++G(d,p) level of theory.

Clusters	PG				NICS			
		0	0.5	1.0	1.5	2.0	2.5	3.0
B ₃ C ₃ Li ₆ (² A')	Cs	-27.245	-23.316	-15.790	-10.000	-6.403	-4.183	-2.814
B ₃ N ₃ Li ₆ (Hexalithio borazine star)	D_{3h}	-0.575	-1.657	-1.983	-1.050	-0.261	-0.121	-0.254
B ₃ O ₃ Li ₆ (Hexalithio boroxine star)	C ₁	2.774	0.574	-1.197	-1.141	-0.805	-0.565	-0.410

C ₄ N ₂ Li ₆								
(Hexalithio pyridazine	C_{2V}	-3.260	-7.921	-11.068	-9.092	-6.318	-4.304	-3.002
star) $(^{1}A_{1})$								
$C_4N_2Li_6$								
(Hexalithio pyrimidine	C_{2V}	-2.615	-7.368	-10.704	-8.939	-6.329	-4.379	-3.078
star) $(^{1}A_{1})$								
$C_4N_2Li_6$								
(Hexalithio pyrazine	C_{2V}	-1.293	-6.426	-10.110	0 -8.767	-6.391	-4.497	-3.184
star) ($^{1}A_{1}$)								

Table S13: The Wiberg bond indices of various bonds (WBI_{B-X}) and the total WBI at B atom (WBI_{B (Tot})) assessed at B3LYP/6-311+G(d) level

Clusters	Bond centers	WBI _{B-X}	WBI _{B (Tot)}
	B(1) - Al(2)	0.648	
	B(1) - Al(3)	0.640	
$BAl_5 (D_{5h} {}^1A_1')$	B(1) - Al(4)	0.640	3.218
	B(1) - Al(5)	0.645	
	B(1) - Al(6)	0.645	
	B(2) - Be(1)	0.719	
	B(2) - Al(3)	0.700	
BAl_4Be^- (C _{2V} 1A_1)	B(2) - Al(4)	0.694	3.386
- (-2 , 1)	B(2) - Al(5)	0.635	
	B(2) - Al(6)	0.638	
	B(2) - Be(1)	0.819	
	B(2) = BC(1) $B(2) = \Delta I(3)$	0.659	
LiBAl ₄ Be ($C_{a}^{-1}A'$)	B(2) = A1(3) B(2) = A1(4)	0.590	3,384
	B(2) - Al(5)	0.564	51501
	B(2) - Al(6)	0.719	
	$B(2) - B_{e}(1)$	0 790	
	B(2) = BC(1) B(2) A1(3)	0.609	
$BA1_{4}Be_{2}^{+}$ (C ⁻¹ A')	B(2) = AI(3) B(2) = AI(4)	0.776	3 511
$DI II4DC_2$ ($C_8 II$)	B(2) = AI(4) B(2) = AI(5)	0.778	5.511
	B(2) - Al(6) B(2) - Al(6)	0.341	
		0.665	
	B(2) - Be(1)	0.665	
	B(2) - AI(3)	0.732	

$BAl_{3}Be_{2}^{2-}(C_{2v}^{1}A_{1})$	B(2) - Al(4)	0.732	3.477
	B(2) - Be(5)	0.665	
	B(2) - Al(6)	0.682	
	B(2) - Be(1)	0.649	
	B(2) - Al(3)	0.795	
$LiBAl_3Be_2^-$ ($C_{2y}^1A_1$)	B(2) - Al(4)	0.795	3.536
	B(2) - Be(5)	0.649	
	B(2) - Al(6)	0.565	
	B(2) - Be(1)	0.639	
	B(2) - Al(3)	0.815	
$BAl_{3}Be_{3} (C_{2v}^{1}A_{1})$	B(2) - Al(4)	0.815	3.598
	B(2) - Be(5)	0.639	
	B(2) - Al(6)	0.404	
	B(2) - Be(1)	0.655	
	B(2) - Al(3)	0.772	
	B(2) - Be(4)	0.669	3.523
$BAl_2Be_3^{3-}$ (C _{2y} ¹ A ₁)	B(2) - Al(5)	0.772	
	B(2) - Be(6)	0.655	
	B(2) - Be(1)	0.628	
	B(2) - Al(3)	0.752	
BAl_2Be_4 (C _s ⁻¹ A')	B(2) - Be(4)	0.657	3.623
	B(2) - Al(5)	0.535	
	B(2) - Be(6)	0.806	
	B(2) - Be(1)	0.803	
	B(2) - Al(3)	0.442	
$BAl_2Be_5^+ (C_s^{-1}A')$	B(2) - Be(4)	0.762	3.625
	B(2) - Al(5)	0.645	
	B(2) - Be(6)	0.760	
	B(2) - Be(1)	0.731	
	B(2) - Al(3)	0.800	
$BAlBe_4^{4-} (C_{2v}{}^1A_1)$	B(2) - Be(4)	0.715	3.692
	B(2) - Be(5)	0.715	
	B(2) - Be(6)	0.731	
	B(7) - Be(1)	0.622	
	B(7) - Be(3)	0.769	
BAlBe ₆ ($C_s^{-1}A'$)	B(7) - Be(4)	0.705	3.691
	B(7) - Be(5)	0.657	

_

	B(7) - Al(8)	0.677	
BBe_5^{5-} (D _{5h} ¹ A ₁ ')	B(2) - Be(1) B(2) - Be(3) B(2) - Be(4) B(2) - Be(5) B(2) - Be(6)	0.812 0.812 0.812 0.812 0.812	4.062
$BBe_{7}^{-} (C_{2v}^{1}A_{1})$	B(8) - Be(1) B(8) - Be(2) B(8) - Be(4) B(8) - Be(5) B(8) - Be(6)	0.699 0.592 0.699 0.704 0.704	3.689

Table S14: The studied clusters, their point groups (PG), total energies (E, au), number of imaginary frequency (NIMAG), minimum frequency (v_{min} , cm⁻¹), HOMO-LUMO gap (Gap, eV) and vertical electron detachment energy for HOMO electron (VEDE*, eV) at B3LYP/6-311+G(d) level

Clusters	PG	Е	NIMAG	ν_{min}	Gap	VEDE
$BAl_5 (^1A_1')$	D_{5h}	-1237.04269	0	73.2	1.900	
BAl_4Be^- (¹ A ₁)	C_{2V}	-1009.40822	0	72.1	1.941	2.801
$LiBAl_4Be(^1A')$	C_s	-1016.88265	0	22.4	1.939	
$LiBAl_4Be(^1A_1)$	C_{2V}	-1016.87579	0	41.8	1.578	
$BAl_4Be_2^+ (^1A') [1]$	C_s	-1023.82723	0	19.4	2.524	
$BAl_4Be_2^+$ (¹ A') [2]	C_s	-1023.82679	0	24.9	2.315	
$BAl_4Be_2^+$ (¹ A ₁)	C_{2V}	-1023.80285	0	64.8	1.513	
$BAl_{3}Be_{2}^{2-}$ (¹ A ₁) [1]	C_{2v}	-781.62043	0	101.3	2.033	-0.984
$BAl_{3}Be_{2}^{2-}$ (¹ A ₁) [2]	$\mathbf{C}_{2\mathbf{v}}$	-781.61110	0	99.2	1.645	
$LiBAl_3Be_2^{-}$ (¹ A ₁)	C_{2v}	-789.22898	0	53.7	1.879	2.501
$LiBAl_{3}Be_{2}^{-}(^{1}A')[1]$	C_s	-789.22208	0	29.1	1.623	
$LiBAl_{3}Be_{2}^{-}(^{1}A')[2]$	C_s	-789.22822	0	39.7	1.781	
BAl_3Be_3 (¹ A ₁)	C_{2v}	-796.32833	0	41.2	2.214	
BAl_3Be_3 (¹ A')	C_s	-796.31789	0	45.9	1.582	
$BAl_2Be_3^{3-}$ (¹ A ₁) [1]	C_{2v}	-553.70377	0	134.7	1.100	-4.120
$BAl_2Be_3^{3-}$ (¹ A ₁) [2]	C_{2v}	-553.70077	0	179.4	1.139	
$BAl_2Be_4^{-}$ (¹ A') [1]	C_s	-568.68404	0	60.1	2.173	2.879
$BAl_2Be_4^{-}$ (¹ A') [2]	C_s	-568.66735	0	73.9	1.578	
$BAl_2Be_4^{-1}(^1A_1)$	C_{2v}	-568.68163	0	34.6	1.729	
$BAl_2Be_5^+$ (¹ A') [1]	C_s	-583.10428	0	42.1	1.761	
$BAl_2Be_5^+$ (¹ A') [2]	C_s	-583.10139	0	22.8	1.637	
$BAl_2Be_5^+$ (¹ A') [3]	C_s	-583.08735	1	64.7i	1.639	
$BAl_2Be_5^+$ (¹ A') [4]	C_s	-583.08568	1	96.0i	2.083	

$BAl_2Be_5^+$ (¹ A') [5]	Cs	-583.07957	1	47.4i	1.537	
$BAlBe_4^{4-}$ (¹ A ₁)	C_{2v}	-325.70667	0	219.5	0.725	-6.755
BAlBe ₆ $({}^{1}A')$ [1]	Cs	-355.59883	0	57.2	1.547	
$BAlBe_{6}$ (¹ A') [2]	Cs	-355.59336	1	76.6i	1.534	
$BAlBe_6$ (¹ A ₁)	C_{2v}	-355.56082	1	46.2i	1.524	
BBe_5^{5-} (¹ A ₁ ')	D_{5h}	-97.62522	0	215.2	0.683	-8.918
$BBe_{7}^{-}(^{1}A_{1})[1]$	C_{2v}	-127.94990	0	76.9	1.606	2.678
$BBe_{7}^{-}(^{1}A_{1})[1]$	C_{2v}	-127.93197	1	38.9i	1.582	

*VEDE is calculated at OVGF/6-311+G(d) level.

Table S15: The nucleus independent chemical shift (NICS (n), ppm) calculated in a triangular plane of the studied clusters at B3LYP/6-311+G(d) level

Clusters	Planes	NICS(0)	NICS(1)	NICS(2)
$BAl_5 ({}^{1}A_1 ' D_{5h})$	Al(2)-Al(6)-B(1)	-23.578	-23.884	-12.070
$BAl_4Be^- (C_{2V} \ ^1A_1)$	Al(3)-Al(6)-B(2) Al(6) B(2) Be(1)	-16.216	-18.059	-9.497
	AI(0)-B(2)-Be(1)	-13.042	-19.511	-9.720
$L_1BAI_4Be(C_s^-A')$	AI(3)-AI(6)-B(2) AI(6)-B(2)-Be(1)	-21.489 -20.684	-22.047 -21.982	-10.951 -10.857
$BAl_4Be_2^+$ (C _s ¹ A')	Al(4)-Al(5)-B(2)	-24.393	-19.520	-7.466
	Al(4)-Al(5)-Be(7)	-5.751	-7.542	-4.115
$BAl_{3}Be_{2}^{2-} (C_{2v}{}^{1}A_{1})$	Al(3)-Al(4)-B(2)	-16.908	-18.510	-9.770
	Al(6)-Be(1)-B(2)	-14.450	-16.841	-9.029
$LiBAl_{3}Be_{2}^{-}(C_{2v}^{-1}A_{1})$	Al(3)-Al(4)-B(2)	-20.097	-18.402	-8.335
	Al(6)-Be(1)-B(2)	-11.493	-13.079	-6.733
$BAl_{3}Be_{3} (C_{2v}{}^{1}A_{1})$	Al(3)-Al(4)-B(2)	-25.809	-20.479	-8.059
	Al(3)-Al(4)-Be(7)	-10.166	-11.264	-5.692
$BAl_2Be_3^{3-} (C_{2v}{}^1A_1)$	Al(3)-Be(4)-B(2)	-13.872	-17.349	-9.132
	B(2)-Be(1)-Be(6)	-12.363	-18.452	-9.498
$BAl_2Be_4^-$ (C _s ⁻¹ A')	Al(3)-Be(6)-B(2)	-21.248	-19.264	-8.080
	Al(3)-Be(6)-Be(7)	-4.998	-9.014	-5.376
$BAl_2Be_5^+ (C_8^{-1}A')$	Al(5)-Be(4)-B(2)	-16.049	-15.577	-6.769
, , ,	Al(5)-Be(4)-Be(8)	-1.613	-5.132	-3.346
BAlBe ₄ ⁴⁻ (C _{2y} 1 A ₁)	Al(3)-Be(4)-B(2)	-15.716	-15.820	-7.378
	Be(1)-Be(6)-B(2)	-17.771	-12.918	-5.068

BAlBe ₆ ($C_s^{-1}A'$)	Al(8)-Be(3)-B(7)	-21.660	-8.492	-7.711
	Al(8)-Be(3)-B(6)	-5.106	-8.030	-4.651
BBe_5^{5-} (D _{5h} ¹ A ₁ ')	B(2)-Be(3)-Be(6)	-20.887	-19.834	-9.393
$BBe_{7}^{-} (C_{2v}^{1}A_{1})$	B(8)-Be(4)-Be(6)	-18.284	-17.211	-7.166
	Be(7)-Be(4)-Be(6)	1.853	-4.460	-3.503

Table S16: Total energy (E) of M^{n+} @ (-H₂O, -NH₃, -HF): (M = Li, Na, Be, Mg: n = 1,2) at different level of theory.

Structure	B3LYP	MP2	M052X
Structure	6-311+G(d, p)	6-311+G(d, p)	6-311+G(d, p)
Li ⁺ -H ₂ O	-83.8017584	-83.5671307	-83.785722
Na ⁺ -H ₂ O	-238.587154	-237.978355	-238.561303
Be ²⁺ -H ₂ O	-90.3466556	-90.1109151	-90.337075
Mg ²⁺ -H ₂ O	-275.831201	-275.222666	-275.807812
Li ⁺ -NH ₃	-63.9337791	-63.7159369	-63.9157541
Na ⁺ -NH ₃	-218.716995	-218.124255	-218.688868
Be ²⁺ -NH ₃	-70.5101413	-70.2920997	-70.4974508
Mg ²⁺ -NH ₃	-255.983516	-255.38936	-255.9563
Li ⁺ -HF	-107.80581	-107.55136	-107.792943
Na ⁺ -HF	-262.597787	-261.967555	-262.575075
Be ²⁺ -HF	-114.295914	-114.04059	-114.289941
Mg ²⁺ -HF	-299.812421	-299.185178	-299.792714

Structure	M0	52X	MP2 (1	FULL)	CC	SD(T)
	6- 311++g(2d,2p)	6- 311++g(3d,3p)	6- 311++g(2d,2p)	6- 311++g(3d,3p)	6-31+g(d)	6-311++g(d,p)
Li ⁺ -H ₂ O	-83.78708	-83.78791	-83.62028	-83.62556	-83.51361	-83.57858
Na ⁺ -H ₂ O	-238.56264	-238.56359	-238.15256	-238.17366	-237.92086	-237.98970
Be ²⁺ -H ₂ O	-90.34138	-90.34210	-90.16796	-90.17317	-90.06060	-90.12244
$Mg^{2+}-H_2O$	-275.81092	-275.81288	-275.39228	-275.40751	-275.16158	-275.23373
Li^+-NH_3	-63.91800	-63.91854	-63.76577	-63.76979	-63.68380	-63.73500
Na ⁺ -NH ₃	-218.69107	-218.69190	-218.29534	-218.31529	-218.08781	-218.14314
Be ²⁺ -NH ₃	-70.50079	-70.50114	-70.34343	-70.34711	-70.26352	-70.31138
$Mg^{2+}-NH_3$	-255.95978	-255.96097	-255.55559	-255.56920	-255.34934	-255.40804
Li ⁺ -HF	-107.79410	-107.79479	-107.60920	-107.61525	-107.47976	-107.55750
Na ⁺ -HF	-262.57630	-262.57694	-262.14802	-262.16964	-261.89149	-261.97271
Be ²⁺ -HF	-114.29570	-114.29699	-114.10404	-114.11052	-113.97439	-114.04657
Mg ²⁺ -HF	-299.79541	-299.79701	-299.35950	-299.37505	-299.10577	-299.19119

Table S17: Single point energy (E) of M^{n+} @ (-H₂O, -NH₃, -HF): (M = Li, Na, Be, Mg: n 1,2) at different level of theory.

Structure	χ	η	ω	Qм
Li ⁺ -H ₂ O	12.196	15.067	4.936	0.99061
Na ⁺ -H ₂ O	11.636	14.063	4.814	0.99751
$Be^{2+}-H_2O$	22.301	14.802	16.801	1.8961
$Mg^{2+}-H_2O$	19.758	13.036	14.973	1.97358
Li ⁺ -NH ₃ Na ⁺ -NH ₃ Be ²⁺ -NH ₃ Mg ²⁺ -NH ₃	11.560 10.910 22.238 19.368	14.100 12.893 15.555 13.139	4.739 4.616 15.896 14.276	0.97986 0.98911 1.84886 1.92406
Li ⁺ -HF Na ⁺ -HF Be ²⁺ -HF Mg ²⁺ -HF	14.225 13.614 24.842 22.053	18.775 17.689 18.436 16.573	5.389 5.239 16.738 14.673	0.99501 0.99888 1.9336 1.98974

Table S18: Electronegativity (χ , eV), hardness (η , eV) and electrophilicity (ω , eV) values and NPA charge on metal center (Q_M) of Mⁿ⁺@ (-H₂O, -NH₃, -HF): (M = Li, Na, Be, Mg: n = 1,2) at B3LYP /6-311+G(d, p) level of theory

Structure	χ	η	ω	Q_M
Li ⁺ -H ₂ O	11.906	15.359	4.614	0.95487
Na^+-H_2O	11.418	14.592	4.467	0.99598
$Be^{2+}-H_2O$	22.094	15.213	16.043	1.87721
$Mg^{2+}-H_2O$	19.540	13.586	14.052	1.96372
Li ⁺ -NH ₃	10.643	12.348	4.586	0.97482
Na ⁺ -NH ₃	10.707	13.362	4.290	0.98298
Be ²⁺ -NH ₃	22.032	15.950	15.216	1.83840
Mg ²⁺ -NH ₃	19.161	13.583	13.515	1.90147
Li ⁺ -HF	14.004	19.194	5.109	0.99305
Na ⁺ -HF	13.397	18.258	4.915	0.99842
Be ²⁺ -HF	24.615	18.851	16.071	1.91551
Mg ²⁺ -HF	21.789	17.104	13.879	1.98516
Mg ²⁺ -HF	21.789	17.104	13.879	1.

Table S19: : Electronegativity (χ , eV), hardness (η , eV) and electrophilicity (ω , eV) values and NPA charge on metal center (Q_M) of Mⁿ⁺@ (-H₂O, -NH₃, -HF): (M = Li, Na, Be, Mg: n = 1,2) at M052X/6-311+G(d, p) level of theory

Structure	χ	η	ω	Q_M
Li ⁺ -H ₂ O	11.880	15.117	4.668	0.99061
Na^+-H_2O	11.830	15.604	4.485	0.99751
Be ²⁺ -H ₂ O	21.954	14.772	16.314	1.8961
$Mg^{2+}-H_2O$	19.284	13.271	14.011	1.97358
Li ⁺ -NH ₃	11.269	14.112	4.500	0.97986
Na ⁺ -NH ₃	10.553	13.016	4.278	0.98911
Be ²⁺ -NH ₃	21.931	15.585	15.430	1.84886
Mg ²⁺ -NH ₃	18.916	13.286	13.467	1.92406
Li ⁺ -HF	13.874	18.788	5.122	0.99501
Na ⁺ -HF	13.154	17.661	4.898	0.99888
Be ²⁺ -HF	24.457	18.391	16.262	1.9336
Mg ²⁺ -HF	21.458	16.646	13.830	1.98974

Table S20: Electronegativity (χ , eV), hardness (η , eV) and electrophilicity (ω , eV) values and NPA charge on metal center (Q_M) of Mⁿ⁺@ (-H₂O, -NH₃, -HF): (M = Li, Na, Be, Mg: n = 1,2) at MP2/6-311+G(d, p) level of theory

MOLECULE	Ε	χ	η	ω
1	-117.76101	-2.844	3.641	1.111
2	-117.77265	-3.103	3.392	1.419
3	-117.74109	-3.102	3.164	1.521
4	-117.80698	-3.177	3.996	1.263
5	-117.76308	-2.963	3.601	1.219
6	-117.78660	-3.125	3.776	1.293
7	-117.80336	-2.994	4.071	1.101
8	-117.79542	-3.297	3.784	1.436
9	-117.66351	-3.209	3.264	1.578
10	-117.73188	-2.921	3.463	1.231
11	-117.74914	-3.227	3.844	1.354
12	-117.75912	-2.694	3.907	0.929
13	-117.76113	-2.958	3.695	1.184
14	-117.58256	-2.342	1.197	2.292
15	-117.78651	-3.390	3.367	1.706

Table S21: The total energy (E, au), electronegativity (χ , eV), hardness(η , eV) and electrophilicity (ω , eV) for the possible isomers of Be₈²⁻ molecule at B3LYP/6-311+G(d) level

Table S22: Atomic charges (Q_k , au), various bond distances (Å) and bond angles(°) of all the possible isomers of Be₈²⁻ molecule optimized at B3LYP/6-311+G(d) level.

Atomic Charges (NPA)	Bond distances	Bond angles
	R(1,2)=R(1,3)=1.997	A(2,1,3)= 63.083
0 104 1 262	R(1,4)=R(1,8)=2.100	A(3,1,4)= 73.394
0.194, -1.303	R(1,5)=1.974; R(2,3)= 2.090	A(2,1,8)= 73.373
-0.084, 0.139	R(3,4)=R(2,8)=2.450	A(4,1,5)= 61.751
-0.136, -0.498	R(4,5)=R(5,8)=2.093	A(5,1,8)= 61.747
-0.294, 0.043	R(4,6)=R(7,8)=2.024	A(3,6,4)= 73.348
	R(3,6)=R(2,7)=2.077	A(2,7,8)=73.332
-0.121, -0.078	R(1,7)= 1.853	A(1,3,7)= 47.988
0.002, -0.156	R(1,2)=R(2,7)=2.101	A(1,2,7)= 52.354

-1.2650.002	R(1.5) = R(5.7) = 2.100	A(1.5.7)=52.367
-0.108, -0.273	R(2.6) = 2.248; R(4.5) = 2.247	A(2,3,6)=68.287
	R(6.8) = 2.076; R(4.6) = 2.076	A(5.3.4)=68.237
	R(2,3) = R(3,5) = 1.961	A(6,3,8)=56,256
	R(3,6) = R(3,4) = 2.043	A(438) = 56253
	R(1,3) = R(3,7) = 2.279	11(1,5,6)= 56.255
-0.403, -0.096	R(1,2)=R(2,3)=2.189	A(1,2,3) = 69.513
-0.403, -0.403	R(3,8)=R(1,6)=2.139	A(1,7,3)= 77.574
-0.403, -0.096	R(6.8) = 2.039; R(2.5) = 2.205	A(1.4.3) = 71.100
-0.097, -0.097	R(2,7)=1.986; R(4,7)=2.185	A(6,4,8)= 60.794
	R(1.7) = R(3.7) = 1.992	A(1.4.6) = 61.741
	R(4,6)=R(4,8)=2.015	A(3,4,8)= 61.779
-0.383, -0.384	R(1,2) = R(1,6) = 2.106	A(1,3,2) = 59.126 A(1,3,6) = 59.381
-0.117, -0.116	R(2,7) = 2.107; R(6,7) = 2.790	A(6,3,7)= 78.611
-0.384, -0.383	R(2,3)=2.039; R(1,3)=2.047	A(2,3,7)= 59.343
-0.116, -0.117	R(3,7)=2.207; R(3,6)=2.196	A(1,8,2) = 59.205
	R(7,8)=2.206; R(6,8)=2.207	A(1,8,6) = 59.286
	R(1,8)=2.040; R(2,8)=2.041	A(2,8,7) = 59.346
	R(4,6)=2.039; R(4,7)=2.039	A(6,8,7)= 78.416
	R(5,7)=2.048; R(5,6)=2.042	A(6,4,7)= 86.313
		A(6,5,7)= 86.011
	R(1,2)=R(1,7)=2.000	A(2,5,7)= 63.399; A(5,7,2)= 58.299
0 122 0 175	R(1,5)=1.982; R(2,7)=2.116	A(7,2,5) = 58.301; A(2,1,5) = 60.738
-0.123, -0.175	R(5,7)=2.013; R(2,5)=2.013	A(2,1,7)= 63.867; A(5,1,7)= 60.734
-1.298, -0.221	R(2,3)=2.224; R(3,7)=2.224	A(3,2,5)= 53.728; A(2,3,7)= 56.806
-0.025, 0.186	R(3,5)=2.231; R(3,6)=2.082	A(5,3,7)= 53.729; A(2,4,7)= 59.192
-0.159, -0.184	R(3,8)=2.034; R(3,4)=2.066	A(3,4,8)= 60.211; A(3,6,8)= 59.403
	R(2,4)=2.142; R(4,7)=2.142	A(3,8,6)= 61.758; A(3,8,4)= 61.851
	R(4,8) = R(7,8) = 2.141	A(2,8,6)= 50.745
0 201 0 201	R(2,4) = R(1,7) = 1.962	A(1,8,5)= 50.706
	R(4,6) = R(5,7) = 2.015	A(2,3,6)= 54.978
-0.227, -0.042	R(2,6) = R(1,5) = 1.953	A(1,3,5)= 54.991
-0.520, -0.525	R(3,6) = R(3,5) = 2.111	A(2,4,6)= 58.802
-0.042, -0.433	R(5,6)= 2.456	A(1,7,5)= 58.798
	R(1,3)=R(2,3)=2.120	A(5,8,6)= 68.413
-0.104, -0.304	R(1,2)= 1.945; R(1,3)=1.987	A(2,1,3)= 61.317; A(2,1,7)= 61.550
-0.215, -0.105	R(1,7)=2.072; R(2,3)=2.005	A(3,1,7)= 61.728; A(3,2,7)= 61.674
-0.302, -0.216	R(3,7)=2.083; R(2,7)=2.058	A(1,4,3)= 52.197; A(1,7,4)= 65.445
-0.375, -0.378	R(4,5)=2.060; R(4,6)=2.073	A(3,8,7)= 55.322; A(5,6,8)= 61.277
	R(4,8)=2.084; R(5,6)=1.945	A(6,4,5)= 56.165; A(6,4,8)= 57.094
	R(5,8)= 2.004; R(6,8)= 1.987	A(5,4,8)= 57.839; A(4,7,8)=56.843
	R(3,4)=2.241; (R4,7)=2.134	A(4,7,6)= 55.978; A(6,7,8)= 52.200
	R(3,8)= 2.247; R(7,8)= 2.241	
-0.265, -0.197	R(2,4)=R(3,7)=2.010	A(2,5,4)= A(3,8,7)= 59.832
-0.265, -0.268	R(2,6)=R(1,7)=2.011	A(2,5,6)= A(1,8,7)= 59.844
-0.270, -0.270	R(4,6)=R(1,3)=2.010	A(4,5,6)= A(1,8,3)= 59.802

0.107 0.268	D(1.9) - D(2.9) - 2.016	$\Lambda(2,4,6) = \Lambda(1,2,7) = 60,017$
-0.197, -0.208	$R(1,\delta) = R(3,\delta) = 2.010$ R(7,0) = R(2,5) = 2.015	A(2,4,0) = A(1,5,7)=00.017
	R(7,8)=R(2,5)=2.015	A(4,2,0) = A(5,7,1) = 59.984
	R(4,5)=R(4,6)=2.016	A(2,6,4) = A(3,1,7) = 60.000
-0.232, -0.268	R(1,2) = R(2,3) = 2.112	A(1,2,3)= A(5,6,7) =134.953
-0.232, -0.268	R(3,4) = R(4,5) = 2.112	A(2,3,4)= A(6,7,8)=134.902
-0.232, -0.268	R(5,6) = R(6,7) = 2.112	A(4,5,6) =A(8,1,2)=134.943
-0.232, -0.268	R(7,8) = R(8,1) = 2.112	A(3,4,5)= 134.953
		A(7,8,1)= 134.953
-0.250, -0.250	R(2,3) = R(1,5) = 2.092	A(2,3,4) = 74.029; $A(1,4,5) = 74.025$
-0.246, -0.480	R(4.7) = R(6.8) = 2.102	A(2,7,4) = 73.134; A(1,8,6) = 73.134
-0.246 -0.480	R(1,7) = R(1,8) = 2.010	$A(3 4 5) = 59 663 \cdot A(4 5 6) = 65 444$
-0.024 -0.024	R(2,7) = R(1,0) = 2.010 R(3,5) = 2.034	$\Delta(4, 3, 5) = 63, 395; \Delta(4, 5, 3) = 56, 942$
-0.024, -0.024	P(4.6) = 2.004	A(4,5,5) = 05.575; A(4,5,5) = 50.742 A(4,6,5) = 60.156; A(5,6,4) = 60.156
	R(4,0) = 2.210	A(4,0,3)= 00.130, A(3,0,4)= 00.130
	R(1,3)=R(1,4)=1.988	A(3,2,4)=A(3,1,4)=65.216
	R(2,4) = R(2,3) = 2.044	A(2,3,4) = A(2,4,3) = 58.375
-0.224, -0.064	R(3,4)=2.143; R(5,6)=2.243	A(1,3,4) = A(1,4,3) = 57.392
-0.091, -0.091	R(5,7)=2.123; R(6,8)=2.068	A(5,6,7)= 58.414; A(7,6,8)= 59.020
0.061, -1.795	R(7,8)=2.054; R(6,7)=2.101	A(6,7,8)= 59.710; A(6,7,5)= 64.147
0.256, -0.051	R(2,6)= 1.947; R(1,5)= 1.983	A(6,5,7)= 57.438; A(6,8,7)= 61.271
	R(3,6) = R(4,6) = 2.208	A(3,6,4)= 58.069; A(3,5,4)= 59.227
	R(3,5)=R(4,5)=2.169	
	R(1,7)=R(7,8)=R(8,1)=2.009	A(1,7,8)= 60.000
-0.1930.422	R(4.5)=R(5.6)=R(4.6)=2.009	A(7.8,1) = 60.000
-0.421, -0.193	R(3.4)=R(3.5)=R(3.6)=2.103	A(7,1,8)=60,000
-0.193 -0.192	R(2,1)=R(2,7)=R(2,8)=2,103	A(456) = 60000
-0.192 -0.193	R(2,1) = R(2,7) = R(2,0) = 2.103 R(2,3) = 2.175	A(5,6,4) = 60,000
0.172, 0.175	R(2,3) = 2.173	A(6,4,5) = 60,000
	$P(2 3) = 2 000 \cdot P(1 5) = 1074$	$\Lambda(0,7,5) = 00.000$
	R(2,3) = 2.090, R(1,3) = 1.974 P(3,4) = 2.450; P(2,8) = 2.450	$\Lambda(3,0,+) = 73.340$ $\Lambda(2,7,8) = 73.320$
-0.919, -0.252	R(3,4) = 2.430, R(2,3) = 2.430 P(4,5) = P(5,8) = 2.002	A(2,7,6) = 75.552 A(2,1,2) = 62.092
-0.252, -0.422	R(4,3) = R(3,0) = 2.093 R(1,2) = R(1,2) = 1.009	A(2,1,5) = 05.085
0.091, 0.088	R(1,2) = R(1,3) = 1.998	A(3,1,4) = 73.394
0.089, -0.423	R(1,4)=R(1,8)=2.100	A(4,1,5) = 61.751
	R(3,6) = R(2,7) = 2.077	A(5,1,8) = 61./4/
	R(4,6) = R(7,8) = 2.024	A(2,1,8)= 73.373
-0.171, -0.229	R(1,2)=R(1,3)=2.105	A(7,6,4) = A(6,4,3) = 180.000
-0.131, -0.244	R(2,5)=R(3,6)=2.075	A(4,3,1) = A(3,1,2) = 180.000
-0.277, -0.319	R(6,7)=R(5,8)=2.100	A(1,2,5)=180.000
-0.276, -0.338		
-0.108, -0.407	R(1,5)=R(5,8)=2.006	A(6,7,2)= 72.850
-0.027, -0.460	R(2,4)=R(4,8)=2.084	A(2,4,8)= 62.466
-0.364, -0.123	R(6,7)=R(2,7)=2.004	A(8,5,1)= 2.763
-0.2260.283	R(1.3)=R(3.6)=2.084	A(1,3,6) = 62.468
		A(4,2,7) = 62.852
		A(3.67) - 62.852
		11(3,0,7)= 02.033

	A(3,1,5)= 62.861
	A(5,8,4)= 62.861

Table S23: Total energy (E, au), Point groups (PG), Ionization energy (IP, eV)), Electron affinity (EA, eV), Electronegativity (χ , eV)),Hardness(η , eV)),Electrophilicity(ω , eV)) of optimized structures at HF/6-311+G(d) level

Clusters	Е	PG	IP	EA	χ	η	ω
$[(B_3BO_3)_2N_4Be_2]^{2-1}$	-992.97726	Cs	4.057	-4.843	-0.393	8.900	0.009
$[(B_3BO_3)_2N_5Be_2]^{-1}$	-1047.47625	C_1	7.886	-1.502	3.192	9.388	0.543
$[(B_3BO_3)_2N_6Be_2]^{2-1}$	-1101.89746	C_1	4.449	-4.735	-0.143	9.184	0.001
$[(B_3BO_3)_2P_4Be_2]^{2-1}$	-2138.23555	Cs	3.665	-4.233	-0.284	7.898	0.005
$[(B_3BO_3)_2CpBe_2]^-$	-967.48493	C_2	6.937	-2.664	2.136	9.602	0.238
$[(B_3BO_3)_2Be_5]^{2-1}$	-819.00970	D_{3h}	2.998	-4.103	-0.552	7.102	0.021
$[(B_3BO_3)_2Mg_3Be_2]^{2-1}$	-1374.04798	C_{2v}	1.442	-3.786	-1.172	5.228	0.131
	-1373.99178	D_{3h}					
$[(B_3BO_3)_2Mg_3Be_2]^{2-1}$		(2)	1.910	-3.768	-0.929	5.678	0.076
$[(B_3BO_3)_2Al_4Be_2]^{2-1}$	-1742.89507	C_1	2.453	-3.684	-0.616	6.137	0.031
	-1742.87315	Cs					
$[(B_3BO_3)_2Al_4Be_2]^{2-1}$		(1)	2.444	-3.542	-0.549	5.987	0.025

For the structures in which there exists imaginary frequency, is given in bracket below point group.

Table S24: Total energy (E, au), Point groups (PG), Ionization energy (IP, eV)), Electron affinity (EA, eV), Electronegativity (χ , eV)),Hardness(η , eV)),Electrophilicity(ω , eV)) of optimized structures at B3LYP/6-311+G(d) level

Clusters $[(B_3BO_3)_2N_4Be_2]^{2-}$	E -998.73602	PG Cs	IP 2.784	EA -3.555	χ -0.385	η 6.339	ω 0.012
$[(B_3BO_3)_2N_5Be_2]^{-1}$	-1053.51404	C_1	6.548	0.690	3.619	5.858	1.118
	-1108.26883	C_1					
$[(B_3BO_3)_2N_6Be_2]^{2-1}$		(1)	2.992	-3.054	-0.031	6.046	0.000
$[(B_3BO_3)_2P_4Be_2]^{2-1}$	-2145.32675	C_s	2.4598	-2.897	-0.219	5.357	0.004
$[(B_3BO_3)_2CpBe_2]^{-1}$	-973.28661	C_2	5.675	-0.552	2.562	6.227	0.527
$[(B_3BO_3)_2Be_5]^{2-1}$	-823.91669	D_{3h}	2.256	-2.935	-0.339	5.191	0.011
$[(B_3BO_3)_2Mg_3Be_2]^2$	-1380.02218						
-		D_{3h}	1.894	-3.011	-0.559	4.905	0.032
$[(B_3BO_3)_2Al_4Be_2]^{2-}$	-1749.59078	C_s	2.050	-2.599	-0.274	4.649	0.008

For the structures in which there exists imaginary frequency, is given in bracket below point group.

Table S25: Total energy (E, au), Point groups (PG), Ionization energy (IP, eV)), Electron affinity (EA, eV), Electronegativity (χ , eV)),Hardness(η , eV)),Electrophilicity(ω , eV)) of optimized structures at M052X/6-311+G(d) level

Clusters	Е	PG	IP	EA	χ	η	ω
$[(B_3BO_3)_2N_4Be_2]^{2}$	-998.62810	Cs	3.388.	4.022	-0.317	7.410	0.007
$[(B_3BO_3)_2N_5Be_2]^{-1}$	-1053.38780	C_1	7.181	0.476	3.829	6.704	1.093
$[(B_3BO_3)_2N_6Be_2]^{2-1}$	-1108.13590	C_1	3.665	-3.339	0.163	7.004	0.002
$[(B_3BO_3)_2P_4Be_2]^{2}$	-2145.18545	Cs	2.918	-3.433	-0.257	6.350	0.005
$[(B_3BO_3)_2CpBe_2]^-$	-973.20572	C_2	6.144	-0.802	2.671	6.946	0.514
$[(B_3BO_3)_2Be_5]^{2-1}$	-823.82294	D_{3h}	2.587	-2.975	-0.194	5.562	0.003
$[(B_3BO_3)_2Mg_3Be_2]^{2-1}$	-1379.88882	D_{3h}	2.105	-2.973	-0.434	5.078	0.018
$[(B_3BO_3)_2Al_4Be_2]^{2-}$	-1749.49298	C_s	1.925	-3.119	-0.597	5.044	0.035

$\frac{\text{CLUSTERS}}{\left[(\text{B}_3\text{BO}_3)_2\text{N}_4\text{Be}_2\right]^{2}}$	NICS(0) -3.430 7.081 -1.483	$\frac{\text{CLUSTERS}}{\left[(\text{B}_3\text{BO}_3)_2\text{P}_4\text{Be}_2\right]^{2}}$	NICS(0) -12.949 -3.613 -12.949	$\frac{\text{CLUSTERS}}{\left[(\text{B}_3\text{BO}_3)_2\text{Mg}_3\text{Be}_2\right]^2}$	NICS(0) 7.942 -17.566 7.942
$[(B_3BO_3)_2N_5Be_2]^{-1}$	16.194 -16.669 12.427	$[(B_3BO_3)_2CpBe_2]^{-1}$	-9.351 -21.653 -10.298	$[(B_3BO_3)_2Al_4Be_2]^{2-1}$	1.343 -23.325 -41.886
$[(B_3BO_3)_2N_6Be_2]^{2-2}$	0.747 2.060 0.154	$[(B_3BO_3)_2Be_5]^{2-2}$	-1.096 -24.438 -1.096		

Table S26: The NICS(0) values in ppm unit of the double decker sandwhich complexes studied at B3LYP/6-311+G(d) level

Upper NICS(0) values corresponds to upper ring, middle NICS(0) values corresponds to middle ring and lower NICS(0) values corresponds to lower ring

BAl₅ (**D**_{5h} ¹A₁')

Fig. S1. The optimized geometry of BAl₅ (D_{5h} ¹A₁') and its lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals at B3LYP/6-311+G(d) level.

Fig. S2. The optimized geometry of BAl_4Be^- (C_{2V} 1A_1) and its lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals at B3LYP/6-311+G(d) level.

Fig. S3. The optimized geometries of LiBAl₄Be and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of LiBAl₄Be (C_s ¹A') at B3LYP/6-311+G(d) level.

Fig. S4. The optimized geometries of $BAl_4Be_2^+$ and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of $BAl_4Be_2^+$ ($C_s^{-1}A'$) [1] at B3LYP/6-311+G(d) level.

Fig. S5. The optimized geometries of $BAl_3Be_2^{2-}$ and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of $BAl_3Be_2^{2-}(C_{2v}{}^1A_1)$ [1] at B3LYP/6-311+G(d) level.

 $LiBAl_{3}Be_{2}^{-}(C_{2v}^{-1}A_{1})$ $LiBAl_{3}Be_{2}^{-}(C_{s}^{-1}A')$ [1]

Fig. S6. The optimized geometries of $LiBAl_3Be_2^-$ and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of $LiBAl_3Be_2^-$ (C_{2v} 1A_1) at B3LYP/6-311+G(d) level.

Fig. S7. The optimized geometries of BAl_3Be_3 and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of BAl_3Be_3 (C_{2v} 1A_1) at B3LYP/6-311+G(d) level.

Fig. S8. The optimized geometries of $BAl_2Be_3^{3-}$ and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of $BAl_2Be_3^{3-}$ (C_{2v} 1A_1) [1] at B3LYP/6-311+G(d) level.

Fig. S9. The optimized geometries of $BAl_2Be_4^-$ and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of $BAl_2Be_4^-$ ($C_s^{-1}A'$) [1] at B3LYP/6-311+G(d) level.

Fig. S10. The optimized geometries of $BAl_2Be_5^+$ and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of $BAl_2Be_5^+$ (C_s⁻¹A') [1] at B3LYP/6-311+G(d) level.

BAlBe4⁴⁻ (C_{2v} ¹A₁)

Fig. S11. The optimized geometries of $BAlBe_4^{4-}$ ($C_{2v}{}^1A_1$) and its lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals at B3LYP/6-311+G(d) level.

Fig. S12. The optimized geometries of BAlBe₆ and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of BAlBe₆ (C_s ¹A') [1] at B3LYP/6-311+G(d) level.

Fig. S13. The optimized geometries of BBe_5^{5-} ($D_{5h}^{-1}A_1$ ') and its lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals at B3LYP/6-311+G(d) level.

Fig. S14. The optimized geometries of BBe_7^- and the lowest unoccupied molecular orbital as well as all occupied valence molecular orbitals of BBe_7^- ($C_{2v}^{-1}A_1$) [1] at B3LYP/6-311+G(d) level.

Fig. S15. The NPA charges on each atom calculated for the studied clusters at B3LYP/6-311+G(d) level.

Fig. S16: The frontier molecular orbital pictures of all the possible isomers of Be_8^{2-} molecule at B3LYP/6-311+G(d) level.