Electronic Supplementary Information for

A DFT Study on Photoinduced Surface Catalytic Coupling Reactions on Nanostructured Silver Surfaces: Selective Formation of Azobenzene Derivatives from *para*-Substituted Nitrobenzene and Aniline

Liu-Bin Zhao, Yi-Fan Huang, Xiu-Min Liu, Jason R. Anema, De-Yin Wu,* Bin Ren, and Zhong-Qun Tian

(1) Testing reliability of theoretical methods

To elucidate the reliability of the present theoretical methods, we presented the optimized structure and simulated Raman spectra of nitrobenzene (NB), aniline (AN), and azobenzene (AB) as shown in Figure S1. Table S1 presents the bond distances of NB, AN, and AB calculated by using different functionals.

Compared with the data of the NB molecule from the gas-phase microwave spectroscopy and the gas electron diffraction (GED), hybrid functional B3LYP method is better than pure functionals PW91PW91 and BP86 methods in predicting N-O interaction. The N-O bond length calculated by B3LYP is 1.225 Å, in good accordance with both microwave and GED measured value of 1.227 Å.¹⁻² The N-O bond length predicted by PW91PW91 and BP86 methods are 1.236 and 1.239 Å, respectively. Therefore these two functionals underestimate N-O bond strength. All the C-N bond lengths calculated from the three functionals fall in between the microwave and GED data.

Underestimating the N-O bond distance by BP86 and PW91PW91 leads to a bad description of the N-O stretching vibration. The calculated frequencies of the N-O symmetric stretching mode by BP86 and PW91PW91 are 1296 and 1307 cm⁻¹, respectively, which are obviously lower than the experimental value at 1347 cm^{-1.3} On the other hand, the B3LYP frequency is 1346 cm⁻¹ very close to experimental data, indicating the B3LYP method is good at predicting the N-O bond strength and its related vibrations.

All the three functionals give similar results in predicting the structures of AN as well as its vibrational spectra. Both the C-N band and the C-C bands are quite close to gas-phase microwave data. At the same time, the simulated Raman spectra of aniline exactly reproduce Tian's experiment result.⁴ This further demonstrates that all three functionals used are good at describing aromatic amines.

As compared with the data of AB from the X-ray crystal structure and the GED, it is clear

that the PW91PW91, BP86, and B3LYP functionals predict well the C-N bond distance. On the

other hand, only the PW91PW91 and BP86 functionals predicted well the N=N bond distance.

PW91PW91 and BP86 gave the N=N bond distances of 1.267 and 1.271 Å, respectively, in good agreement with the value of 1.268 Å measured by GED.⁵ However, the B3LYP bond distance is obviously shorter than the experimental data. This indicates that the hybrid DFT approaches may

overestimate the bonding strength of the azo N=N bond in AB compounds.

PW91PW91 and BP86 functionals also led to the best simulated Raman spectra of the AB molecule⁶ (see Figure S1). The N=N stretching mode calculated by BP86 and PW91PW91 are 1409 and 1419 cm⁻¹, respectively. They are close to the experimental measurement of 1441 cm^{-1.6} B3LYP method overestimates N=N bond strength, which predicts the frequency of N=N stretching at 1520 cm⁻¹. The frequencies of normal modes of AB are calculated well by the PW91PW91 method followed by the BP86 method.⁷⁻⁸

From the above discussion, we can conclude that B3LYP method is good at predicting the N-O bond while BP86 and PW91PW91 functionals are good at describe the N=N bond. All the three methods can describe the C-N bond in aniline and azobenzene well. Accurate prediction of the equilibrium structure is very important to theoretically simulate the molecular vibrational spectra.

•	•					
Nitrobenzene	B3LYP	PW91PW91	BP86	Microwave ¹	X-ray	GED^2
C-N	1.481	1.485	1.489	1.492		1.474
N-O	1.225	1.236	1.239	1.227		1.228
C1-C2	1.391	1.397	1.400	1.375		1.387
C2-C3	1.391	1.396	1.399	1.403		1.415
C3-C4	1.395	1.400	1.403	1.396		1.393
Aniline	B3LYP	PW91PW91	BP86	Microwave ⁹	X-ray ¹⁰	GED ¹¹
C-N	1.398	1.398	1.402	1.402	1.398	1.406
C1-C2	1.403	1.409	1.399	1.397	1.404	1.403
C2-C3	1.391	1.396	1.399	1.394	1.380	1.393
C3-C4	1.395	1.399	1.402	1.396	1.386	1.396
Azobenzene	B3LYP	PW91PW91	BP86	Microwave	X-ray ¹²	GED^5
N-N	1.252	1.267	1.271		1.247	1.260
N-C	1.419	1.417	1.421		1.428	1.427
C3-C4	1.404	1.410	1.413		1.387	1.405
C4-C5	1.388	1.392	1.395		1.384	1.393
C5-C6	1.399	1.404	1.407		1.382	1.402
C6-C7	1.393	1.399	1.402		1.391	1.397

Table S1 Comparison of Calculated and Measured Bond Distances (Å) of NB, AN, and ABCalculated by Using Different Theoretical Methods.

C7-C8	1.392	1.396	1.399	1.384	1.396

Fig. S1 Simulated normal Raman spectra of NB (left), AN (middle), and AB (right) using B3LYP, BP86 and PW91PW91 combining with the basis set of $6-311+G^{**}$. An excitation wavelength of 632.8 nm and a line width of 10 cm⁻¹ were used in the simulated Raman spectra.

(2) Simulated Raman spectra with different clusters

Fig. S2 Simulated normal Raman spectra of Ag_m-PNTP, Ag_m-PATP (B3LYP/6-311+G(d,p)/LANL2DZ) and Ag_m-DMAB-Ag_m (PW91PW91/6-311+G(d, p)/LANL2DZ) (m = 5, 7). An excitation wavelength of 632.8 nm and a line width of 10 cm⁻¹ were used in the simulated Raman spectra.

Fig. S3 Simulated normal Raman spectra of Ag_m-PNBA, Ag_m-PABA (B3LYP/6-311+G(d,p)/LANL2DZ) and Ag_m-ADBA-Ag_m (PW91PW91/6-311+G(d, p)/LANL2DZ) (m = 5, 7). An excitation wavelength of 632.8 nm and a line width of 10 cm⁻¹ were used in the simulated Raman spectra.

(3) Vibrational analysis

Table S2 Comparison of experimental Raman and SERS spectra with theoretical harmonic frequencies (cm⁻¹) and Raman scattering activity ($Å^4$ /amu) of PNBA calculated at the B3LYP/6-311+G(d,p) level. Vibrational assignment is based on the potential energy distribution.

	NR	SE	SERS				
Experiment ¹³	Calculation	Experiment ¹³	Calculation	Assignments			
1620 (w)	1616 (8.29)		1617 (10.21)	$\upsilon_{as}CO_2$			
1600 (m)	1604 (229.54)	1600 (s)	1604 (687.94)	υС–С			
1525 (w)	1536 (25.04)		1539 (27.86)	$\upsilon_{as}NO_2$			
1395 (m)	1384 (92.96)	1395 (m)	1370 (310.32)	$\upsilon_s CO_2$			
1350 (s)	1341 (247.74)	1355 (s)	1339 (410.75)	$\upsilon_s NO_2$			
1145 (w)	1127 (14.72)		1130 (42.35)	υC–CO ₂ , βCH			
1115 (m)	1093 (92.83)	1115 (m)	1094 (218.79)	υC-NO ₂ , βCH			
875 (m)	863 (52.85)	875 (m)	861 (80.77)	βNO_2			
805 (w)	832 (6.30)	835 (w)	820 (23.75)	βCO_2			

Table S3 Comparison of experimental Raman and SERS spectra with theoretical harmonic frequencies (cm⁻¹) and Raman scattering activity ($Å^4$ /amu) of PABA calculated at the B3LYP/6-311+G(d,p) level. Vibrational assignment is based on the potential energy distribution.

Ν	I R	SE	A	
Experiment ¹⁴	Calculation	Experiment ¹⁴	Calculation	Assignments
	1631 (80.14)		1632 (279.42)	δNH_2
1605 (s)	1613 (119.81)	1604(s)	1613 (523.48)	υC–C
1517 (w)	1516 (12.05)	1517(w)	1512 (54.61)	$\upsilon_{as}CO_2$
1382 (s)	1380 (104.63)	1373(s)	1365 (322.11)	$\upsilon_s CO_2$
1279 (w)	1273 (31.25)	1253(w)	1278 (118.51)	υC–N
1178 (w)	1173 (5.39)	1178(w)	1176 (25.19)	βCH
1139 (m)	1129 (28.50)	1139(w)	1135 (111.81)	υC–CO ₂ , βCH
855 (s)	851 (71.49)	855(w)	845 (30.34)	vC–C
		793(w)	796 (7.70)	βCO_2
638 (w)	641 (6.41)	638(w)	627 (23.86)	α_{as} ring

Table S4	Characteristic	vibrational	Raman	frequencies	and the	heir po	otential	energy	distribution	ı of
azobenze	ne and its deriv	atives calcul	lated by	PW91PW9	1/6-31	1+G(d	l,p)			

Molecule	Characteristic Vibrational Frequency and PED				
	1125	1176	1419	1481	
Azobanzana	1123	1170	vN=N(44)	vN=N(38)	
Azobelizelle	VC - IN(23)	VC-N(22)	vC-C(19)	vC-C(25)	
	рС-н(45)	рС-н(44)	βC-H(34)	βC-H(32)	
	1120	1102	1392	1428	
CII	1129 NC N(22)	1192 C. N(24)	vN=N(38)	vN=N(25)	
-3П	VC = IN(23)	VC - N(24)	vC-C(38)	vC-C(33)	
	рС-н(49)	рС-н(42)	βC-H(20)	βC-H(31)	
	1121	1100	1397	1435	
COOLI	$\frac{1121}{1125}$	$\frac{1182}{1182}$	vN=N(19)	vN=N(37)	
-COOH	VC = N(23)	VC - N(10)	vC-C(52)	vC-C(25)	
	рС-H(42)	рС-H(30)	βC-H(19)	βC-H(28)	
	1120	1102	1399	1451	
	1129	1195 C. N(20)	vN=N(62)	vN=N(10)	
$-\mathbf{NH}_2$	VC - N(19)	VC - N(29)	vC-C(21)	vC-C(46)	
	рС-н(37)	рС-н(37)	βC-H(12)	βC-H(25)	
	1124	1172	1394	1436	
NO	1124	1172	vN=N(21)	vN=N(22)	
-1NO ₂	VC = IN(23)	VC-N(24)	vC-C(48)	vC-C(29)	
	рС- п (42)	рС-п(38)	βC-H(24)	βC-H(37)	
	1123	1181	1405	1455	
OU	1123	1101	vN=N(50)	vN=N(20)	
-Оп	VC = N(17)	VC = N(31)	vC-C(25)	vC-C(36)	
	рс-п(37)	рс-п(34)	βC-H(18)	βC-H(20)	
	1123	1181	1397	1433	
CN	M(27)	N(10)	vN=N(23)	vN=N(36)	
-CIN	VC = IN(27)	$\frac{VC-N(19)}{RC}$	vC-C(49)	vC-C(27)	
	рС-п(42)	рС-п(47)	βC-H(26)	βC-H(27)	

(4) Pre-resonance Raman Spectra

Fig. S4 Simulated pre-resonance Raman spectra of (a) Ag_{13} -PNTP, (b) Ag_{13} -PATP, (a) Ag_{9} -PNBA, and (d) Ag_{9} -PABA at B3LYP/6-311+G(d, p)/LAN2DZ. The incident wavelength was chosen to have energy gaps of 0.1 eV lower than the low-lying CT excited state.

(5) Molecular Orbitals and TD-DFT

Table S5 Molecular Orbitals and Low-lying Charge Transfer Transitions of Ag_{13} -PNTP complexCalculated at B3LYP/6-311+G(d,p) level.

	Occ	cupied		Unoccupied		
HOMO (163)				LUMO (164)		
HOMO-1 (162)				LUMO+1 (165)		
HOMO-2 (161)				LUMO+2 (166)		
HOMO-3 (160)				LUMO+3 (167)		
HOMO-4 (159)				LUMO+4 (168)		
HOMO-5 (158)				LUMO+5 (169)		
Excited 16 16 16 16 16 16 16 16 26 Excited	I State 19: i2A ->168A i3A ->165A i3A ->168A i2B ->168B i3B ->168B i3B ->168B i3B ->168B I State 20:	Singlet-A 0.10103 0.11302 0.68265 0.10103 0.11302 0.68265 Singlet-A	1.72	73 eV 717.8 43 eV 702.7	1 nm f=0.0001 3 nm f=0.0508	
16 16	52A ->165A 52A ->168A	0.11909 0.67641				

162B ->165B	0.11909
162B ->168B	0.67641

Occupied			Unoccupied			
HOMO (156)		LUMO (157)				
HOMO-1 (155)		LUMO+1 (158)				
HOMO-2 (154)		LUMO+2 (159)				
HOMO-3 (153)		LUMO+3 (160)				
HOMO-4 (152)		LUMO+4 (161)				
HOMO-5 (151)		LUMO+5 (162)				
Excited	State 24: Singlet-A	2.2823 eV 543.25	nm f=0.0006			
15	4A ->157A 0.68392					
15	5A ->161A 0.14613					
15	4B ->15/B 0.68392 5B >161B 0.14612					
13 Evoited	SD ->101D $U.14013$ State 27: Singlet- Δ	2 3873 eV 510 35	nm f-0.0034			
15	3A ->157A 0.67551	2.3073 0 1 317.33	IIIII I-0.00JT			
15	4A ->158A -0.11241					

153B ->157B	0.67551
154B ->158B	-0.11241

Table S7 Molecular Orbitals and Low-lying Charge Transfer Transitions of Ag_9 -PNBA complexCalculated at B3LYP/6-311+G(d,p) level.

Occupied			Unoccupied			
HOMO (128)		••• •••• •••• 8*8	LUMO (129)			
HOMO-1 (127)			LUMO+1 (130)			
HOMO-2 (126)		······································	LUMO+2 (131)			
HOMO-3 (125)			LUMO+3 (132)			
HOMO-4 (124)			LUMO+4 (133)			
HOMO-5 (123)			LUMO+5 (134)			
Excited	State 8:	Singlet -A	2.0012 eV 619.54	4 nm f=0.0031		
12	7A ->129A	-0.13984				
12	8A ->130A	-0.13782				
12	8A >131A	0.58810				
12	7R ->132A	-0 13984				
12	8B ->130R	-0.13782				
12	8B ->131B	0.58810				

128B ->1	32B	0.31766			
Excited State	14:	Singlet -A	2.2943 eV	540.40 nm	f=0.0072
127A ->12	29A	-0.10814			
128A ->1	31A	-0.32869			
128A ->1	32A	0.60620			
127B ->12	29B	-0.10814			
128B ->12	31B	-0.32869			
128B ->13	32B	0.60620			

Table S8 Molecular Orbitals and Low-lying Charge Transfer Transitions of Ag₉-PABA complex Calculated at B3LYP/6-311+G(d,p) level.

Occupied		Unoccupied			
HOMO (121)	-30 ⁴ 0- -30 ⁴ 0- -30 ⁴ 0- 8 ⁴ 8 €	LUMO (122)			
HOMO-1 (120)		LUMO+1 (123)			
HOMO-2 (119)	, y d y - , y d y - , d y d y	LUMO+2 (124)			
HOMO-3 (118)		LUMO+3 (125)	90 90 9 90 90 90 90 90 90		
HOMO-4 (117)		LUMO+4 (126)			
HOMO-5 (116)		LUMO+5 (127)			
Excited State 11: Singlet -A 2.2072 eV 561.73 nm f=0.0001					

120B ->122B	0.70166			
Excited State 21:	Singlet -A	2.6403 eV	469.59 nm	f=0.0274
118A ->123A	0.12087			
120A ->123A	0.67576			
121A ->125A	-0.12993			
118B ->123B	0.12087			
120B ->123B	0.67576			
121B ->125B	-0.12993			

1 V. A. Shlyapochnikov, L. S. Khaikin, O. E. Grikina, C. W. Bock and L. V. Vilkov, J. Mol. Struct., 1994, **326**, 1-16.

2 O. Dorofeeva, Y. Vishnevskiy, N. Vogt, J. Vogt, L. Khristenko, S. Krasnoshchekov, I. Shishkov, I. Hargittai and L. Vilkov, *Struct. Chem.*, 2007, **18**, 739-753.

3 J. Clarkson and W. Ewen Smith, J. Mol. Struct., 2003, 655, 413-422.

4 Z. Q. Tian, L. C. Lei and X. B. Jing, Acta Physico-Chimica Sinica, 1988, 4, 458-460.

5 T. Tsuji, H. Takashima, H. Takeuchi, T. Egawa and S. Konaka, J. Phys. Chem. A, 2001, **105**, 9347-9353.

6 Y.-C. Liu and R. L. McCreery, Anal. Chem., 1997, 69, 2091-2097.

7 D. Y. Wu, X. M. Liu, Y. F. Huang, B. Ren, X. Xu and Z. Q. Tian, *J. Phys. Chem. C*, 2009, **113**, 18212-18222.

8 N. Kurita, S. Tanaka and S. Itoh, J. Phys. Chem. A, 2000, 104, 8114-8120.

9 D. G. Lister, J. K. Tyler, J. H. Høg and N. W. Larsen, J. Mol. Struct., 1974, 23, 253-264.

10 M. Fukuyo, K. Hirotsu and T. Higuchi, Acta Cryst., 1982, B38, 640-643.

11 G. Schultz, G. Portalone, F. Ramondo, A. Domenicano and I. Hargittai, *Struct. Chem.*, 1996, **7**, 59-71.

12 J. A. Bouwstra, A. Schouten and J. Kroon, Acta Cryst., 1983, C39, 1121-1123.

13 P. G. Roth, R. S. Venkatachalam and F. J. Boerio, J. Chem. Phys., 1986, 85, 1150-1155.

14 H. Park, S. B. Lee, K. Kim and M. S. Kim, J. Phys. Chem., 1990, 94, 7576-7580.