## **Supplementary Information for**

# Production of Singlet Oxygen by the Reaction of Non-Basic Hydrogen Peroxide with Chlorine Gas

Wenming Tian, Wenbo Shi, Heping Yang, Rongrong Cui, and Liezheng Deng\*

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road Dalian, 116023 Liaoning, P. R. China

\* Corresponding author. Tel: +86 411 84379010. Fax: +86 411 84675584.E-mail address: dlz@dicp.ac.cn

### **CONTENTS**

| Measurement of the yield of $O_2(^1\Delta)$ by spontaneous Raman scattering method             | S2         |
|------------------------------------------------------------------------------------------------|------------|
| Methods for estimating $[HO_2^-]$ and PH Value in $H_2O_2$ solutions                           | S4         |
| Figure S1. Interference of Cl <sub>2</sub> fluorescence with SRS spectrum in nBHP-2 experiment | <b>S</b> 8 |
| Figure S2. Interference of Cl <sub>2</sub> fluorescence with SRS spectrum in nBHP-3 experiment | <b>S</b> 8 |
| Figure S3. Interference of Cl <sub>2</sub> fluorescence with SRS spectrum in nBHP-4 experiment | S9         |
| Figure S4. Cl <sub>2</sub> fluorescence-eliminated SRS spectrum in nBHP-4 experiment           | S9         |
| Gaussian Calculations                                                                          | S10        |
| References                                                                                     | S11        |

## Measurement of the Yield of $O_2(^1\Delta)$ by spontaneous Raman scattering method

The yield of  $O_2(^1\Delta)$ ,  $Y_{\Delta}$ , is defined as the fraction of  $O_2(^1\Delta)$  in total  $O_2$  gas,

$$Y_{\Delta} = \frac{[O_{2}({}^{1}\Delta)]}{[O_{2}({}^{1}\Delta)] + [O_{2}({}^{3}\Sigma)]}.$$
 (1)

where  $[O_2({}^1\Delta)]$  and  $[O_2({}^3\Sigma)]$  denote the concentration of singlet oxygen and ground state oxygen respectively. In 1998, Gylys *et al.*<sup>1,2</sup> developed a spontaneous Raman scattering (SRS) method for the measurement of the yield of  $O_2({}^1\Delta)$ . The principal is as follows. When an  $O_2({}^1\Delta)$  gas flow is excited by a laser beam, the produced SRS intensities of  $O_2({}^1\Delta)$  and  $O_2({}^3\Sigma)$ ,  $I_{R\Delta}$  and  $I_{R\Sigma}$ , can be expressed as

$$I_{R\Delta} = \sigma_{\Delta} \cdot [O_2(^{1}\Delta)] \cdot I$$

$$I_{R\Sigma} = \sigma_{\Sigma} \cdot [O_2(^{3}\Sigma)] \cdot I$$
(2)

where  $\sigma_{\Delta}$  and  $\sigma_{\Sigma}$  denote the Raman cross-section of  $O_2(^1\Delta)$  and  $O_2(^3\Sigma)$  respectively (the subscript  $_{\Delta}$  and  $_{\Sigma}$  hereinafter are referred to  $O_2(^1\Delta)$  and  $O_2(^3\Sigma)$  respectively), and *I* is the laser intensity. According to Eqs.(1)-(2), the final formula used to calculate the yield of  $O_2(^1\Delta)$  can be written as

$$Y_{\Delta} = \frac{I_{R\Delta}}{I_{R\Delta} + (\sigma_{\Delta}/\sigma_{\Sigma})I_{R\Sigma}} = \frac{I_{R\Delta}}{I_{R\Delta} + \theta \cdot I_{R\Sigma}}$$
(3)

where the Raman cross-sectional ratio  $\theta = \sigma_{\Delta}/\sigma_{\Sigma}$ , and has been measured to be 0.45 0.03 at 527 nm (frequency-doubled YLF laser),<sup>2</sup> and is expected to be close to that at 532 nm (frequency-doubled YAG laser) because of the closeness of the wavelengths.

Obviously, according to Eq.(3) the relative error of  $Y_{\Delta}$  can be expressed as

$$\left|\frac{dY_{\Delta}}{Y_{\Delta}}\right| = \left(1 - Y_{\Delta}\right) \cdot \left[\left|\frac{d\theta}{\theta}\right| + \left|\frac{dI_{R\Delta}}{I_{R\Delta}}\right| + \left|\frac{dI_{R\Sigma}}{I_{R\Sigma}}\right|\right]$$
(4)

In practice, the  $I_{R\Delta}$  and  $I_{R\Sigma}$  in Eq.(3) were replaced respectively by the peak areas of  $O_2(^{1}\Delta)$  and  $O_2(^{3}\Sigma)$  in a SRS spectrum, and the  $\left|\frac{dI_{R\Delta}}{I_{R\Delta}}\right|$  and  $\left|\frac{dI_{R\Sigma}}{I_{R\Sigma}}\right|$ , the relative errors of

 $I_{R\Delta}$  and  $I_{R\Sigma}$  in Eq.(4) were replaced respectively by the reciprocals of the signal-to-noise

ratios of  $O_2(^1\Delta)$  and  $O_2(^3\Sigma)$  in a SRS spectrum.

However, as shown in Figures S1-S3, the SRS of  $O_2({}^{1}\Delta)$  and  $O_2({}^{3}\Sigma)$  is often interfered with the fluorescence of residual Cl<sub>2</sub> resulted from the incomplete reaction of Cl<sub>2</sub> with H<sub>2</sub>O<sub>2</sub>, and the yield of  $O_2({}^{1}\Delta)$  can not directly be calculated out by Eq.(3). The method for eliminating fluorescence interference from SRS spectrum has been proposed by Wolga <sup>3</sup> in 1978 and is as follows. A polarizer is inserted between the sample and the spectrograph. When the polarization directions of the laser and the polarizer are parallel (//) to each other, the total light intensity detected,  $I_{t/l}$ , is

$$I_{t/l} = I_{R/l} + I_{F/l} . (5a)$$

and when perpendicular (^), the total light intensity detected becomes  $I_{t\perp}$  (note that the acquisition times for  $I_{t\parallel}$  and  $I_{t\perp}$  are strictly equal),

$$I_{t\perp} = I_{R\perp} + I_{F\perp} \,. \tag{5b}$$

In Eq.(5),  $I_R$  and  $I_F$  are the intensity of SRS and fluorescence respectively. Given the fact that Raman radiation is always strongly polarized while fluorescence is essentially non-polarized and  $I_{F//} = I_{F\perp}$  in a gaseous medium, the fluorescence will be eliminated from the SRS spectrum and Eq.(6) be obtained when Eq.(5a) is subtracted by Eq.(5b).

$$I_{t/l} - I_{t\perp} = I_{R/l} - I_{R\perp} .$$
 (6)

Basing on the above Wolga's method,<sup>3</sup> we further suggested<sup>4</sup> that the total intensity of Raman scattering,  $I_R$ , be expressed as

$$I_{R} = I_{R//} + I_{R\perp} = \frac{(1+\rho)}{(1-\rho)} (I_{t//} - I_{t\perp})$$
(7)

(**T T** )

where  $\rho = I_{R^{\wedge}}/I_{R//}$ , is depolarization ratio, and Eq.(3) is then changed as follows

$$Y_{\Delta} = \frac{(I_{t/l} - I_{t\perp})_{\Delta}}{(I_{t/l} - I_{t\perp})_{\Delta} + \theta' \cdot (I_{t/l} - I_{t\perp})_{\Sigma}}$$
  
$$\theta' = \frac{1 + \rho_{\Sigma}}{1 - \rho_{\Sigma}} \left(\frac{1 + \rho_{\Delta}}{1 - \rho_{\Delta}}\right)^{-1} \cdot \theta$$
(8)

In Eq.(7) the values of  $\rho_{\Sigma}$  and  $\rho_{\Delta}$  have been estimated by us <sup>4</sup> to be  $\rho_{\Sigma}=0.067$  and  $\rho_{\Delta}=0.05$ , and then  $\theta' = 0.47$ , very close to the value of  $\theta$  (0.45) used in Eqs.(3-4). Therefore, Eqs.(3-4) still hold for the fluorescence-eliminated SRS spectrum except that the  $I_R$  term is needed to be substituted by the  $(I_{t/l} - I_{t\perp})$ .

In BHP (KO<sub>2</sub>H) and nBHP-1 (C<sub>5</sub>H<sub>5</sub>N) experiments in which the fluorescence of residual Cl<sub>2</sub> had not yet obviously interfere with the SRS spectrum of O<sub>2</sub>(<sup>1</sup> $\Delta$ ) and O<sub>2</sub>(<sup>3</sup> $\Sigma$ ) (see A and B in Figure 1), the yield of O<sub>2</sub>(<sup>1</sup> $\Delta$ ) and its relative error were directly calculated out by Eqs.(3-4). While in nBHP-2 (CH<sub>3</sub>COONH<sub>4</sub>), nBHP-3 (HCOONH<sub>4</sub>) and nBHP-4 (NH<sub>4</sub>F) experiments in which the SRS spectrum of O<sub>2</sub>(<sup>1</sup> $\Delta$ ) and O<sub>2</sub>(<sup>3</sup> $\Sigma$ ) had been overwhelmed by the fluorescence of residual Cl<sub>2</sub> (see Figures S1-S3), ( $I_{t/l} - I_{t\perp}$ ), the fluorescence-eliminated SRS intensity is first obtained and then Eqs.(3-4) are applied.

However, it should be pointed out that even with the use of Wolga's method, the SRS spectrum for nBHP-4 could not anyway be separated from the  $Cl_2$  fluorescence background (see Figure S3-S4) due to the low  $Cl_2$ +(nBHP-4) reaction efficiency, hence the yield of  $O_2(^{1}\Delta)$  was unable to be measured in the case of nBHP-4.

### Methods for estimating [HO<sub>2</sub><sup>-</sup>] and PH Value in H<sub>2</sub>O<sub>2</sub> Solutions

In this section, all the dissociation constants of acids are cited from Ref. [5].

Basic Hydrogen Peroxide (BHP) Solution. The acid-base equilibriums are

$$\begin{split} H_2O_2 & \Leftrightarrow H^+ + HO_2^- \quad k_h = 2.4 \times 10^{-12} \\ H_2O & \Leftrightarrow H^+ + OH^- \quad k_w = [H^+] \cdot [OH^-] = 1.0 \times 10^{-14} \end{split}$$

The equation of charge conservation may be written as

$$[H^{+}] + [K^{+}] = [HO_{2}^{-}] + OH^{-}$$
(9.1)

The [K<sup>+</sup>] should equal  $C_{\text{KO2H}}$ , the initial concentration of KO<sub>2</sub>H (6.6M here).

$$[\mathbf{K}^+] = C_{\mathrm{KO2H}} \tag{9.2}$$

 $[HO_2^-]$  can be expressed as

$$[HO_{2}^{-}] = \alpha_{HO_{2}^{-}} \times (C_{H2O2} + C_{KO2H})$$
(9.3)

where  $C_{\text{H2O2}}$  is the initial concentration of  $\text{H}_2\text{O}_2$  (2.4M here), ( $C_{\text{H2O2}}+C_{\text{KO2H}}$ ) represents the apparent concentration of  $\text{H}_2\text{O}_2$ , i.e. the total concentration of  $\text{H}_2\text{O}_2$  in all forms, and  $\alpha_{\text{HO}_2^-}$  is the fraction of  $\text{HO}_2^-$  in total  $\text{H}_2\text{O}_2$ , and can be expressed as

$$\alpha_{\rm HO_2^-} = \frac{[\rm HO_2^-]}{C_{\rm H_2O_2} + C_{\rm KO_2H}} = \frac{k_{\rm h}}{k_{\rm h} + [\rm H^+]}$$
(9.4)

The water ionic product is a constant  $(1.0 \times 10^{-14} \text{ at } 25 \text{ \pm C})$  as

$$[\mathrm{H}^+] \cdot [\mathrm{OH}^-] = \mathrm{kw} \tag{9.5}$$

[H<sup>+</sup>], [K<sup>+</sup>],  $\alpha_{HO_2^-}$ , [HO<sub>2</sub><sup>-</sup>], and [OH<sup>-</sup>] can be solved out from Eqs.(9.1-9.5), and then the PH value,  $-\log([H^+])$ , can be obtained.

C<sub>5</sub>H<sub>5</sub>N - Dissolved Hydrogen Peroxide Solution. The acid-base equilibriums are

$$\begin{split} H_2O_2 & \Leftrightarrow H^+ + HO_2^- & k_h = 2.4 \times 10^{-12} \\ H_2O & \Leftrightarrow H^+ + OH^- & k_w = [H^+] \cdot [OH^-] = 1.0 \times 10^{-14} \\ C_5H_5NH^+ & \Leftrightarrow H^+ + C_5H_5N & k_a = 5.9 \times 10^{-6} \end{split}$$

The proton balance equation can be written as

Ŀ

$$[H^{+}] + [C_{5}H_{5}NH^{+}] = [HO_{2}^{-}] + OH^{-}$$
(10.1)

And it is evident that

$$[C_{5}H_{5}NH^{+}] = \alpha_{C_{5}H_{5}NH^{+}} \times C_{C_{5}H_{5}N}$$
(10.2)

$$\alpha_{C_{S}H_{S}NH^{+}} = \frac{[C_{S}H_{S}NH^{+}]}{C_{C_{S}H_{S}N}} = \frac{[H^{+}]}{k_{a} + [H^{+}]}$$
(10.3)

$$[HO_2^{-}] = \alpha_{HO_2^{-}} \times C_{H2O2}$$
(10.4)

$$\alpha_{\rm HO_2^-} = \frac{[\rm HO_2^-]}{C_{\rm H2O2}} = \frac{k_{\rm h}}{k_{\rm h} + [\rm H^+]}$$
(10.5)

$$[\mathrm{H}^+] \cdot [\mathrm{OH}^-] = \mathrm{kw} \tag{10.6}$$

In Eqs.(10.1-10.6),  $\alpha_{C_5H_5NH^+}$  is the fraction of  $C_5H_5NH^+$  in total  $C_5H_5N$ ,  $C_{C5H5N}$  and  $C_{H2O2}$  are the initial concentrations of  $C_5H_5N$  and  $H_2O_2$  respectively, and are both 9.0M here. [H<sup>+</sup>], [C<sub>5</sub>H<sub>5</sub>NH<sup>+</sup>], [HO<sub>2</sub><sup>-</sup>], [OH<sup>-</sup>],  $\alpha_{C_5H_5NH^+}$  and  $\alpha_{HO_2^-}$  can be solved out from Eqs.(10.1-10.6), and then the PH value,  $-\log([H^+])$ , can be obtained.

CH<sub>3</sub>COONH<sub>4</sub>, H<sub>3</sub>COONH<sub>4</sub>, and NH<sub>4</sub>F Dissolved Hydrogen Peroxide Solutions. The acid-base equilibriums for these solutions are

$$\begin{split} H_2O_2 & \Leftrightarrow H^+ + HO_2^- & k_h = 2.4 \times 10^{-12} \\ H_2O & \Leftrightarrow H^+ + OH^- & k_w = [H^+] \cdot [OH^-] = 1.0 \times 10^{-14} \\ NH_4^+ & \Leftrightarrow H^+ + NH_3 & k_{a1} = 5.6 \times 10^{-10} \\ H \cdot Base & \Leftrightarrow H^+ + Base^- & k_{a2} \end{split}$$

where Base<sup>-</sup> represents CH<sub>3</sub>COO<sup>-</sup>, HCOO<sup>-</sup> or F<sup>-</sup>, and  $k_{a2}$  equals  $1.75 \times 10^{-5}$  (CH<sub>3</sub>COOH),  $1.8 \times 10^{-4}$  (HCOOH) or  $6.3 \times 10^{-4}$ (HF).

The proton balance equation may be written as

$$[H^{+}] + [H \cdot Base] = [NH_{3}] + [HO_{2}^{-}] + OH^{-}$$
(11.1)

And it is evident that

$$[\mathbf{H} \cdot \mathbf{Base}] = \alpha_{\mathbf{H} \cdot \mathbf{Base}} \times C_{\mathbf{S}} \tag{11.2}$$

$$\alpha_{\text{H-Base}} = \frac{[\text{H} \cdot \text{Base}]}{C_{\text{S}}} = \frac{[\text{H}^+]}{\text{ka}_2 + [\text{H}^+]}$$
(11.3)

$$[\mathrm{NH}_3] = \alpha_{\mathrm{NH}3} \times C_\mathrm{S} \tag{11.4}$$

$$\alpha_{\rm NH3} = \frac{[\rm NH_3]}{C_{\rm S}} = \frac{\rm ka_1}{\rm ka_1 + [\rm H^+]}$$
(11.5)

$$[\mathrm{HO}_{2}^{-}] = \alpha_{\mathrm{HO}_{2}^{-}} \times C_{\mathrm{H}_{2}\mathrm{O}_{2}}$$
(11.6)

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2012

$$\alpha_{\rm HO_2^-} = \frac{[\rm HO_2^-]}{C_{\rm H,O_2}} = \frac{k_{\rm h}}{k_{\rm h} + [\rm H^+]}$$
(11.7)

$$[\mathrm{H}^+] \cdot [\mathrm{OH}^-] = \mathrm{kw} \tag{11.8}$$

In Eqs.(11.1-11.8),  $\alpha_{\text{H-Base}}$  is the fraction of H**y**Base in total Base<sup>-</sup>,  $C_{\text{S}}$  is the initial concentration of the salt CH<sub>3</sub>COONH<sub>4</sub>, H<sub>3</sub>COONH<sub>4</sub>, or NH<sub>4</sub>F (9.0M here). [H<sup>+</sup>], [H · Base], [NH<sub>3</sub>], [HO<sub>2</sub><sup>-</sup>], [OH<sup>-</sup>],  $\alpha_{\text{H-Base}}$ ,  $\alpha_{\text{NH3}}$  and  $\alpha_{\text{HO_2}}$  can be solved out from Eqs.(11.1-11.8), and then the PH value,  $-\log([\text{H}^+])$ , can be obtained.

 $H_2O_2 - H_2O$  System. The  $H_2O_2 - H_2O$  system consists of  $H_2O_2$  and  $H_2O$  only, and the acid-base equilibriums are

$$\begin{array}{ll} H_2O_2 & \Leftrightarrow H^+ + HO_2^- & k_h = 2.4 \times 10^{-12} \\ H_2O & \Leftrightarrow H^+ + OH^- & k_w = [H^+] \cdot [OH^-] = 1.0 \times 10^{-14} \end{array}$$

And evidently,

$$[H^+] = [HO_2^-] + [OH^-]$$
 (The proton balance equation) (12.1)

$$[HO_2^{-}] = \alpha_{HO_2^{-}} \times C_{H_2O_2}$$
(12.2)

$$\alpha_{\rm HO_2^-} = \frac{[\rm HO_2^-]}{C_{\rm H_2O_2}} = \frac{k_{\rm h}}{k_{\rm h} + [\rm H^+]}$$
(12.3)

$$[\mathrm{H}^+] \cdot [\mathrm{OH}^-] = \mathrm{kw} \tag{12.4}$$

From Eqs.(12.1-12.4), [H<sup>+</sup>], [HO<sub>2</sub><sup>-</sup>], [OH<sup>-</sup>] and  $\alpha_{HO_2^-}$  can be solved out, and then the PH value,  $-\log([H^+])$ , can be obtained.



**Figure S1.** Interference of  $Cl_2$  fluorescence with SRS spectrum in nBHP-2 experiment. Where  $I_{t/l}$  and  $I_{t\perp}$  is the spectrum obtained when the polarization directions of the laser and the polarizer are parallel (//) and perpendicular (^) to each other respectively, and the expected peak positions of the Raman scattering of  $O_2(^{1}\Delta)$  and  $O_2(^{3}\Sigma)$  are indicated by the arrows.



**Figure S2.** Interference of  $Cl_2$  fluorescence with SRS spectrum in nBHP-3 experiment. Where  $I_{t/l}$  and  $I_{t\perp}$  is the spectrum obtained when the polarization directions of the laser and the polarizer are parallel (//) and perpendicular (^) to each other respectively, and the expected peak positions of the Raman scattering of  $O_2(^{1}\Delta)$  and  $O_2(^{3}\Sigma)$  are indicated by the arrows.



**Figure S3.** Interference of  $Cl_2$  fluorescence with SRS spectrum in nBHP-4 experiment. Where  $I_{t/l}$  and  $I_{t\perp}$  is the spectrum obtained when the polarization directions of the laser and the polarizer are parallel (//) and perpendicular (^) to each other respectively, and the expected peak positions of the Raman scattering of  $O_2(^{1}\Delta)$  and  $O_2(^{3}\Sigma)$  are indicated by the arrows.



**Figure S4.**  $Cl_2$  fluorescence-eliminated SRS spectrum in nBHP-4 experiment, separated from Figure S4. Where the Raman scattering of  $O_2(^1\Delta)$  and  $O_2(^3\Sigma)$  is too weak to be distinguished out of the noise, and the expected peak positions of the Raman scattering of  $O_2(^1\Delta)$  and  $O_2(^3\Sigma)$  are indicated by the arrows.

#### **Gaussian Calculations**

Gaussian calculations were performed by using Gaussian03 program.<sup>6</sup> The Route Section input parameter is "#opt freq b3lyp/6-31+g(d,p) scrf=(solvent=water) geom=connectivity", and the Spin multiplicity is "1". The input geometries for the calculated species are listed in Table 1S. The resulted optimized geometries and the charge distributions for HOOH, Cl-Cl, [HOOH**jjj**Cl-Cl] and [HOO<sup>-</sup> - Cl**jjj**Cl] are shown in Figure 4.

| Species                    |                                                                                          | Input geometry                                                                                       |                                                                                                                  | Energy results<br>(Hartree-Fork) |
|----------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Cl <sub>2</sub>            | Cl<br>Cl 1 B1                                                                            | B1 1.98000000                                                                                        |                                                                                                                  | -920.3543376                     |
| НОН                        | O<br>H 1 B1<br>H 1 B2 2 A1                                                               | B1 0.95840000<br>B2 0.96000000<br>A1 104.45000000                                                    |                                                                                                                  | -76.4484363                      |
| ноон                       | O<br>H 1 B1<br>O 1 B2 2 A1<br>H 3 B3 1 A2 2 D1                                           | B1 0.96000000<br>B2 1.48000000<br>B3 0.96000000<br>A1 100.00000000                                   | A2 100.00000000<br>D1 111.50000000                                                                               | -151.579444                      |
| [HOH CI-CI]                | O<br>H 1 B1<br>H 1 B2 2 A1<br>Cl 1 B3 2 A2 3 D1<br>Cl 1 B4 2 A3 3 D2                     | B1 0.9600000<br>B2 0.9600000<br>B3 1.6500000<br>B4 3.6300000<br>A1 109.5000006                       | A2 110.11775945<br>A3 110.11775945<br>D1 -120.45367159<br>D2 -120.45367159                                       | -996.8082014                     |
| [НООН СІ-СІ]               | O<br>H 1 B1<br>O 1 B2 2 A1<br>H 3 B3 1 A2 2 D1<br>C1 1 B4 3 A3 4 D2<br>C1 1 B5 3 A4 4 D3 | B1 0.99505392<br>B2 1.45054355<br>B3 0.99260790<br>B4 2.53531358<br>B5 4.62081074<br>A1 101.83784163 | A2 101.14597691<br>A3 110.00880127<br>A4 110.75285873<br>D1 111.02684643<br>D2 -138.43057729<br>D3 -138.21874323 | -1071.937958                     |
| [HOO <sup>-</sup> - Ci Ci] | O<br>O 1 B1<br>H 2 B2 1 A1<br>Cl 1 B3 2 A2 3 D1<br>Cl 1 B4 2 A3 3 D2                     | B1 1.46009246<br>B2 0.98662074<br>B3 1.65000000<br>B4 3.63000000<br>A1 100.17403771                  | A2 105.46689451<br>A3 105.46689451<br>D1 121.55171848<br>D2 121.55171848                                         | -1071.5031257                    |

Table 1S. The input geometries and the energy results from the calculations

Based on the energy results listed in Table 1S, the interaction energy between H<sub>2</sub>O and Cl<sub>2</sub>,  $E_{\text{H2O-Cl2}}$ , and the interaction energy between H<sub>2</sub>O<sub>2</sub> and Cl<sub>2</sub>,  $E_{\text{H2O-Cl2}}$ , can be calculated out as follows.

$$\begin{split} E_{\rm H_2O-Cl_2} &= E_{\rm H_2O} + E_{\rm Cl_2} - E_{\rm [HOH\cdots Cl-Cl]^{\#}} = 3.4 \text{ kcal/mol} \\ E_{\rm H_2O_2-Cl_2} &= E_{\rm H_2O_2} + E_{\rm Cl_2} - E_{\rm [HOOH\cdots Cl-Cl]^{\#}} = 2.6 \text{ kcal/mol} \end{split}$$

#### References

- 1 V. T. Gylys, L. F. Rubin, Appl. Opt., 1998, 37, 1026.
- 2 L. F. Rubin, V. T. Gylys, Opt. Lett., 1998, 22 1347.
- 3 G. J. Wolga, US Pat., 4 080 073, 1978.
- 4 R. Cui, W. Shi, L. Deng, H. Yang, G. Sha, C. Zhang, *Chin. J. Chem. Phys.*, 2012, 25, 142. (in English)
- 5 D. D. Perrin, *Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution*, Butterworths, London, 1969.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Version 6.0, Gaussian, Inc., Pittsburgh PA, 2003.