Supplementary Information

Rapid Calculation of Protein Chemical Shifts Using Bond Polarization Theory and its Application to Protein Structure Refinement

Igor Jakovkin, Marco Klipfel, Claudia Muhle-Goll, Anne S. Ulrich, Burkhard Luy and Ulrich Sternberg

Contents

1. Adjustment of ¹³ C reference for proteins	2
1.1 BPT calculated 13 C chemical shifts (CS) in α -helical peptides	2
1.2 BPT calculated ^{13}C CS in α -helical peptides vs. averaged experimental CS	3
2. ¹⁵ N chemical shift calculation in crystalline tripeptides	4
2.1 Calculated ¹⁵ N CS in AGG, APG and GGV peptides in different geometries	4
2.2 AGG, APG and GGV trimer structures used for BPT and DFT calculations	4
2.3 GGV and APG unit cell structures used for BPT calculation	6
2.4 Experimental and calculated 15 N and 13 C chemical shifts in f-MLF-OH	7
2.5 Experimental and calculated TMS geometry and chemical shieldings	7
2.6 Dynamic averaging of ¹⁵ N chemical shift in f-MLF-OH	8
3. Definition of ${}^{13}C_{\alpha}$ -RMSD	8
4. References	9

1. Adjustment of ¹³C reference for proteins

Table SI1: Comparison of the BPT calculated ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ chemical shifts (CS) in NH₃⁺-(Ala₄X)₄Ala₄-COO⁻ (X=corresponding amino acid) peptides with the consensus α -helical geometry (ϕ = -57.80° and ψ = -47.00°) with the averaged experimental ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ chemical shifts in helical structures as defined by Zhang et al.¹ The differences Δ CS between BPT calculated and averaged experimental chemical shifts are comparable with the systematic deviations between BPT calculated and experimental chemical shifts in Ubiquitin (PDB ID 1D3Z). All calculations were performed using original BPT parameterization^{2,3} for 13 C and additional reference value for 13 C CS calculation in proteins could be defined.

Amino acid	BPT CS*	Averaged CS	ΔCS	ΔCS in Ubiquitin
	(in ppm)	(in ppm)	(in ppm)	(in ppm)
$^{13}C_{\alpha}$ nucleus				
GLY	40.33±0.19	46.91±1.10	6.58±1.29	4.59±2.11
ILE	57.90±0.47	64.57±1.74	6.67±2.21	5.29±2.31
LYS	55.77±0.29	58.93±1.44	3.16±1.73	2.69±2.22
SER	55.78±0.11	60.88±1.61	5.10±1.72	4.58±2.86
THR	55.29±0.05	65.61±2.39	10.32±2.44	5.77±1.98
VAL	55.70±0.15	66.16±1.55	10.46±1.70	5.97±4.24
Reference $^{13}C_{\alpha}$				4.8 ppm
PRO	50.73±0.21	65.49±1.08	14.76±1.29	16.24±0.16
Reference ${}^{13}C_{\alpha}$ PRO				16.2 ppm
$^{13}C_{\beta}$ nucleus				
ARG	37.22±0.22	30.14±1.14	-7.08±1.36	-7.77±0.39
GLN	35.26±0.21	28.51±0.92	-6.75±1.13	-8.02±0.95
GLU	35.79±0.38	29.37±0.99	-6.42±1.37	-8.39±1.86
ILE	46.15±0.12	37.60±1.15	-8.55±1.27	-9.91±2.95
VAL	45.46±0.19	31.49±0.72	-13.97±0.91	-11.13±2.43
Reference ¹³ C _β				-9.0 ppm

*All ¹³C chemical shifts are referenced to DSS.

Figure SI1: Correlation between the BPT calculated ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ chemical shifts in peptides with consensus α -helical geometry and the averaged experimental ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ chemical shifts in helical structures as defined by Zhang et al.¹ (correlation coefficient R=0.983 and standard deviation SD=2.90 ppm; BPT parameterization includes additional references given in Table SI1).

2. ¹⁵N chemical shift calculations in crystalline tripeptides

Figure SI2: Correlation of the isotropic ¹⁵N nuclear shielding values from *ab initio* calculations at the MP2/TZVPP level with values obtained by BPT (correlation coefficient R=0.988, and standard deviation SD=4.7 ppm).

Table SI2: Comparison of the experimental⁴ and BPT calculated ¹⁵N chemical shifts in central residues of crystalline tripeptides. Note that peptide trimers (cf. Figure SI2) are not sufficient representation of crystalline environment neither in BPT nor in DFT⁴ framework.

¹⁵ N Chemical shift in ppm					
Molecule	Experiment	BPT – Unit cell	BPT – Trimer	DFT – Trimer	BPT – Monomer
APG	132.4±0.5	136.1	124.4	141	156.7
AGG	104.8±0.5	104.0	108.5	113	135.6
GGV	112.8±0.5	114.7	110.8	122	121.4
MAE		2.1	4.6	8.7	21.2

Figure SI3A: Structure of AGG trimer used in DFT and BPT calculations. Target nitrogen is emphasized and hydrogen bonds are shown in gray.

Figure SI3B: Structures of GGV (at the top) and APG (at the bottom) trimers used in DFT and BPT calculations. Target nitrogen is emphasized and hydrogen bonds are shown in gray.

Figure SI4: Unit cells of GGV (at the top) and APG (at the bottom) tripeptides used in BPT calculations with periodic boundary conditions. Structures belonging to the asymmetric unit are shown in full colour.

Table SI3: Experimental⁵ and calculated chemical shifts (in ppm) of N-formyl-L-Met-L-Leu-L-Phe-OH (all ¹³C CS are referenced to DSS): MD – averaged CS values over 10 ps molecular dynamics trajectory; FSS – CS values obtained via full structure search of the conformational space⁵; ¹H opt. – CS values of the structure obtained via full structure search after hydrogen position optimization.

Residue	Experiment	BPT – MD	BPT – FSS	BPT – ¹ H opt.	DFT* – ¹ H opt.
¹⁵ N					
Met	125.5	124.3	125.2	127.1	146.6 (98.0)
Leu	116.2	117.5	119.2	124.6	127.2 (117.4)
Phe	107.6	109.3	113.6	101.4	109.6 (135.0)
MAE		1.4	3.1	5.4	11.4
¹³ C _α					
Met	52.0	54.8	54.9	55.0	58.4 (127.5)
Leu	56.8	55.2	55.3	55.1	63.9 (122.0)
Phe	54.4	54.4	54.8	54.1	62.7 (123.2)
MAE		1.5	1.6	1.7	7.3
¹³ C _β					
Met	37.9	39.7	39.7	40.1	47.4 (138.5)
Leu	40.7	41.1	41.0	41.4	49.8 (136.1)
Phe	36.9	42.0	41.9	41.8	37.9 (148.0)
MAE		2.4	2.4	2.6	6.5

* Nuclear shieldings are given in brackets. ¹³C nuclear shieldings were converted into chemical shifts using calculated reference value for TMS in Table SI4. 1.7 ppm were added to each calculated ¹³C chemical shift for conversion from TMS to DSS chemical shift scale⁶. ¹⁵N nuclear shieldings were converted into chemical shifts using the reference value of 244.6 ppm⁴.

Table SI4: Experimental^{7,8} and calculated (tight geometry optimization^{9,10}, DFT B3LYP with 6-311++G(d,p) basis set) geometry parameters and chemical shieldings of TMS. Calculated shielding was used for conversion of ¹³C nuclear shieldings into chemical shifts given in Table SI3.

Parameters of the calculated and experimental TMS geometry and chemical shielding					
Molecule	Si–C in Å	C–H in Å	Si–C–H in degrees	σ in ppm	
Experimental	1.877±0.004	1.110±0.003	111.0±0.2	188.1	
DFT B3LYP	1.891	1.095	111.3	184.2	

Figure SI4: Calculated averaged ¹⁵N chemical shift in N-formyl-L-Met-L-Leu-L-Phe-OH during molecular dynamics (MD). To minimize the influence of the MD equilibration phase on the averaged chemical shift time averaging was performed using exponential memory decay function¹¹.

3. Definition of ${}^{13}C_{\alpha}$ -RMSD

Definition of the conformationally averaged ${}^{13}C_{\alpha}$ chemical shift root mean square deviation between calculated and experimental chemical shift values (${}^{13}C_{\alpha}$ -RMSD) as introduced by Vila et al. for validation of protein structures 12 and comparison of computational methods 13 :

$${}^{13}C_{\alpha} - RMSD = \left[(1/N) \sum_{i=1}^{N} (\delta_{\exp,i} - (1/\Omega) \sum_{j=1}^{\Omega} \delta_{calc,i,j})^{2} \right]^{1/2}$$
(SI1)

with N – number of amino acids in protein sequence, Ω – number of protein structures in ensemble and δ - chemical shift of ¹³C_{α}.

4. References

¹ Zhang, H.; Neal, S.; Wishart, D. S. RefDB: A database of uniformly referenced protein chemical shifts; *J. Biomol. NMR* **2003**, *25*, 173-195

² Prieß, W.; Sternberg, U. Fast calculation of ¹³C NMR chemical shift tensors using bond polarization model; *J. Mol. Struct. (Theochem)* **2001**, *544*, 181

³ Sternberg, U.; Koch, F.-Th.; Prieß, W.; Witter, R. Crystal structure refinements of cellulose polymorphs using ¹³C solid state chemical shifts; *Cellulose* **2003**, *10*, 189-199

⁴ Waddell, K. W.; Chekmenev E. Y.;Wittebort R. J. Single-Crystal Studies on Peptide Prolyl and Glycyl ¹⁵N Shielding Tensors; *J. Am. Chem. Soc.* **2005**, *127*, 9035

⁵ Rienstra, C. M.; Tucker-Kellogg, L.; Jaroniec, C. P.; Hohwy, M.; Reif, B.; McMahon, M. T.; Tidor, B.; Lozano-Perez, T.; Griffin, R. G. *De novo* determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy; *Proc. Natl. Acad. Sci. U.S.A.* **2002**, *99*, 10260

⁶ Wishart, D. S,; Bigam, C. G,; Yao, J,; Abildgaard, F,; Dyson, H. J,; Oldfield, E,; Markley, J. L.; Sykes, B. D. ¹H, ¹³C and ¹⁵N chemical shift referencing in biomolecular NMR; *J. Biomol. NMR* **1995**, *6*, 135–140

⁷ Campanelli, A. R.; Ramondo, F.; Domenicano, A.; Hargittai, I. Toward a more accurate silicon stereochemistry: an electron diffraction study of the molecular structure of tetramethylsilane; *Struct. Chem.* **2000**, *11*, 155-160

⁸ Jameson, A. K.; Jameson, C. J. Gas-phase ¹³C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for ¹³C; *J. Chem. Phys. Lett.* **1997**, *134*, 461

⁹ Csaszar, P. and Pulay, P. Geometry optimization by direct inversion in the iterative subspace; *J. Mol. Struct. (Theochem)* **1984**, *114*, 31-34

¹⁰ Farkas, Ö. and Schlegel, H. B. Methods for optimizing large molecules. II. Quadratic search; *J. Chem. Phys.* **1999**, *111*, 10806-10814

¹¹ Sternberg, U.; Witter, R.; Ulrich, A. S. All-atom molecular dynamics simulations using orientational constraints; *J. Biomol. NMR* **2007**, *38*, 23-39

¹² Vila, J. A.; Villegas, M. E.; Baldoni, H. A.; Scheraga, H. A. Predicting ${}^{13}C^{\alpha}$ chemical shifts for validation of protein structures; *J. Biomol. NMR* **2007**, *38*, 221-235

¹³ Vila, J. A.; Baldoni, H. A.; Scheraga, H. A. Performance of Density Functional Models to Reproduce Observed ¹³C^α Chemical Shifts of Proteins in Solution; *J. Comput. Chem.* **2009**, *30*, 884-892