Supplementary Material (ESI) for PCCP

This journal is © the Owner Societies 2012

Electronic supplementary information

Supporting Information

A Time-Resolved Spectroscopy and Density Functional Theory Study of the Solvent Dependent Photochemistry of Fenofibric Acid

Ming-De Li, Jiani Ma, Tao Su, Mingyue Liu, and David Lee Phillips*

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. E-mail: phillips@hkucc.hku.hk.

Table of contents

Figure 4S. Comparison of the subtracted resonance Raman spectrum of FA (top) obtained in MeCN/H2O(9:1) at 10 ns with the DFT calculation predicted Raman spectrum of the FA triplet state..S4

Figure 13S. Optimized structure of the ³FA⁻ anion calculated from the B3LYP/6-311G** DFT calculations. Selected bond lengths (in Å) and bond angles (in deg) are labeled......S8

Figure 14S. Optimized structure of the FA carbanion (A) and the enolate 3⁻ anion (B) intermediates calculated from the B3LYP/6-311G** DFT calculations. Selected bond lengths (in Å) and bond angles (in deg) are labeled.

Figure 1S. UV/vis absorption spectra for the photolysis of FA in the MeCN/H₂O (9:1) and MeCN/H₂O (3:7) mixed solvents. The time periods the sample solution is exposed to the 299 nm excitation laser

pulse are labeled for each of the spectra traces.

Figure 2S. Comparison of the subtracted resonance Raman spectrum of FA (top) obtained in MeCN/H₂O(9:1) at 10 ns with the one obtained in acetonitrile at 0 ns. The asterisk (*) marks subtraction artifacts.

Figure 3S. Comparison of the subtracted resonance Raman spectrum of FA (top) obtained in $MeCN/H_2O(9:1)$ at 10 ns with the DFT calculation predicted Raman spectrum of the FA radical cation.

Figure 4S. Comparison of the subtracted resonance Raman spectrum of FA (top) obtained in $MeCN/H_2O(9:1)$ at 10 ns with the DFT calculation predicted Raman spectrum of the FA triplet state.

Figure 5S. The time-dependence of the resonance Raman band 1583 cm⁻¹ for FA ((closed squares) in MeCN/H₂O(9:1) was fit by a two-exponential function with a 98 ns growth time constant and a 174 ns decay time constant for FA. The solid lines indicate the kinetics fitting to the experimental data points.

Figure 6S. Comparison of the subtracted resonance Raman spectrum of FA (top) obtained in $MeCN/H_2O(9:1)$ at 10 ns with the DFT calculation predicted Raman spectrum of the FA benzophenone like anion.

Figure 7S. Power dependence of 1.5 mM FA in 1:9 H_2O :MeCN neutral solution obtained by 299 nm pump laser and 341.5 nm probe laser.

Figure 8S. Optimized structure of the FA ketyl radical by the UB3LPY/6-311G**. Selected bond

lengths and angles are displayed in the structure.

Figure 9S. Optimized structure of the FA biradical by the UB3LPY/6-311G**. Selected bond lengths and angles are displayed in the structure.

Figure 10S. Shown are the ns-TR³ spectra of intermediates obtained after 299 nm photolysis of 1.5 mM FA in MeCN/H₂O (3:7) mixtures in open air (left) and oxygen purging conditions (right) obtained using a 341.5 nm probe wavelength at various time delays indicated next to the spectra. The asterisks (*) marks regions affected by solvent subtraction artifacts and/or stray light.

Figure 11S. The time-dependence of the resonance Raman band 1583 cm⁻¹ for the triplet state FA anion ((closed circles) in the MeCN/PB (1:1) was fit by a two-exponential function with a \sim 37 ns growth time constant and a \sim 105 ns decay time constant; The time-dependence of the resonance Raman band 1585 cm⁻¹ for the FA carbanion ((closed squares) in the MeCN/PB (1:1) was fit by a two-exponential function with a \sim 107 ns growth time constant and a \sim 1950 ns decay time constant. The solid lines indicate the kinetics fitting to the experimental data points.

Figure 12S. The proposed three intermediates by Miranda and coworkers after the photodecarboxylation from anionic form and its corresponding photoproducts.

Figure 13S. Optimized structure of ${}^{3}FA^{-}$ anion calculated from the B3LYP/6-311G** DFT calculations. Selected bond lengths (in Å) and bond angles (in deg) are labeled.

Figure 14S. Optimized structures of FA carbanion (A) and enolate 3⁻ anion (B) calculated from the B3LYP/6-311G** DFT calculations. Selected bond lengths (in Å) and bond angles (in deg) are labeled.

Table 1S. Raman frequencies (cm⁻¹) and vibrational assignments for the FA Ketyl radical, the FA biradical, the FA carbanion and the enolate 3⁻ anion for which the structures are displayed in Figure 5S,

Figure 6S and Figure 10S.

Calc. Raman Shifts (cm ⁻¹) FA ketyl radical	Expt. Raman Shifts (cm ⁻¹)	Vibrational mode
706	728	O-H bend, C-C stretch, C-O stretch, ring breath stretch
731	758	O-H bend, C-C stretch, ring breath stretch
795	806	C-H bend, C-C stretch, C-O stretch, ring breath stretch
992	995	C=C stretch
1082	1082	C-Cl stretch, C-O stretch
1121	1121	C-H bend
1152		C-H bend
1175	1177	C-H bend, C-O stretch
1234		C-H bend, C-O stretch
1326	1326	C=C stretch, C-O stretch
1377		C-C stretch, O-H bend
1572	1558	C=C stretch
1589	1583	C=C stretch
FA biradical		
716	728	Ring breath stretch
760	772	Ring breath stretch, C-O stretch
819	836	Ring breath stretch, C-H bend, C-O stretch
978	994	Ring breath stretch
1063		C-Cl stretch
1081	1082	C-O stretch, C-H bend
1110	1121	C-H bend
1140		C-H bend
1168	1174	C-H bend

1195		O-H bend
1250	1258	C=C stretch
1315	1324	C-O stretch, C-H bend
1367		O-H stretch, C-C stretch, C-H bend
1475	1488	C=C stretch, C-H bend
1558	1560	C=C stretch
1580	1582	C=C stretch
FA carba	nion	
700	728	C-H bend
778	784	Ring breath stretch
838		C-C stretch, C-O stretch
996	993	Ring breath stretch
1072	1081	C-Cl stretch
1144		C-H stretch
1185	1179	C-H stretch
1265	1275	C-C stretch, C-H bend
1318	1328	C=C stretch, C-H bend
1424		C=O stretch, C=C stretch, C-H bend
1487	1490	C=O stretch, C=C stretch, C-H bend
1526		C=C stretch
1559	1558	C=C stretch
1590	1585	C=C stretch
1630	1640	C=C stretch
Enolate 3	anion	
728	728	Ring breath stretch
799	784	Ring breath stretch
908		Ring breath stretch

1006	993	Ring breath stretch
1070	1081	C-Cl stretch
1153	1179	C-C stretch, C-H stretch
1280	1275	C-C stretch, C=C stretch, C-H bend
1300	1318	C=C stretch, C-C stretch, C-H bend
1409		C-C stretch, C-H bend
1476	1490	C=C stretch, C-H bend
1565	1558	C=C stretch, C=O stretch,
1589	1585	C=C stretch, C=O stretch,
1632	1640	C=C stretch, C=O stretch,

Figure 15S. The Cartesian coordinates, total energies, and vibrational zero-point energies for the optimized geometry from the (U)B3LYP/6-311G** calculations for the species of interest in the paper are given.

FA radical cation

Center	Atomic	Forces (Hartrees/Bohr)			
Number	Number	Х	Y	Z	
1	6	-0.000008604	-0.000008285	-0.000003798	
2	6	-0.000004296	-0.000002713	0.000004637	
3	6	-0.000004318	0.000005397	-0.000003076	
4	6	-0.000005705	0.000005882	-0.000009484	
5	6	0.000013862	-0.000011451	-0.000019142	
6	1	0.000001826	-0.000011964	0.000012466	
7	1	0.000001754	-0.000012308	0.000006000	
8	1	0.000002105	0.000004159	-0.000009417	
9	1	-0.000001312	0.000013522	-0.000004920	
10	6	0.000008469	0.000002478	-0.000017525	
11	6	-0.00000220	0.000001888	-0.000003068	
12	6	-0.000001135	-0.00000208	-0.000003713	
13	6	-0.00000886	0.00000643	-0.000000099	
14	6	0.000003785	0.000001872	-0.000004437	
15	1	0.00000895	-0.000003095	-0.000011430	
16	6	0.000003248	0.000003693	0.000009991	
17	1	-0.000001009	0.000004486	0.000007411	
18	1	-0.000001751	0.000005126	0.000011011	
19	1	0.00000108	-0.000001453	-0.000004195	
20	6	0.000006479	0.000004436	0.000028795	
21	6	-0.000006769	-0.000001316	0.000004233	
22	8	0.000001390	-0.000012998	-0.000006985	
23	17	0.000004341	0.000005817	0.000008286	
24	8	-0.000033301	0.000001340	-0.000051386	
25	6	0.000046022	0.000027004	0.000043769	
26	6	-0.00000275	0.000007574	0.000001198	
27	1	-0.000012553	0.000000275	0.000002531	
28	1	0.000002274	0.000002368	0.000008237	
29	1	-0.000005630	0.000016741	0.000003760	
30	6	0.000011958	-0.000022408	0.000005354	
31	1	-0.000015889	0.000002906	-0.000007274	
32	1	-0.000001380	0.000000616	-0.000008785	
33	1	0.000007144	-0.000009960	-0.000017358	

34	6	-0.000031945	-0.000017594	-0.000001125
35	8	0.000003570	-0.000015844	0.000019836
36	8	0.000017658	0.000027452	-0.000012636
37	1	0.00000090	-0.000014077	0.000022341

Sum of electronic and thermal Free Energies= -1417.701618(a.u.) Zero-point correction= 0.282756 (Hartree/Particle)

FA benzophenone like anion

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Z
1	6	-0.000016304	-0.000000476	-0.000004648
2	6	0.000007443	0.000010857	-0.000002249
3	6	0.000008412	-0.000015749	0.000005979
4	6	-0.000012421	0.000003521	-0.000002407
5	6	0.000013628	0.000009885	-0.000000772
6	1	0.000003709	0.000000619	0.000000811
7	1	-0.00000243	-0.000001240	0.000001605
8	1	0.00000778	-0.000000457	0.000001525
9	1	-0.000003585	-0.000001390	-0.000000164
10	6	-0.000002420	0.000024295	-0.000000605
11	6	0.000000532	-0.000006531	-0.000000772
12	6	-0.000004770	0.000000152	0.000000000
13	6	0.000000949	0.000002989	0.000001504
14	6	0.000003780	-0.000001610	0.00000782
15	1	-0.000000130	0.000000442	0.000001341
16	6	-0.00000972	-0.000001501	-0.000000887
17	1	0.000000466	-0.000000060	0.000001079
18	1	0.00000924	0.000001171	0.000000978
19	1	-0.00000677	0.000000506	0.000001386
20	6	-0.000001411	-0.000012871	0.000000646
21	6	-0.000003502	0.000006167	0.000002374
22	8	-0.00000324	-0.000012985	0.000000244
23	17	0.000002300	-0.000000723	0.00000833
24	8	0.000006216	0.000003810	-0.00000368
25	6	0.000009200	0.000005190	0.000006055
26	6	0.000005325	-0.000003518	-0.000011741
27	1	-0.000003435	-0.000002451	0.000002245
28	1	-0.000002017	-0.000000492	-0.000002563
29	1	-0.000003530	-0.000001495	0.000003677
30	6	0.00000377	-0.000007717	-0.000003410
31	1	-0.000000383	0.00000878	-0.000003674
32	1	0.000000476	0.00000878	0.000002712
33	1	-0.00000633	0.00000976	0.000002185

34	6	-0.000004430	0.000004040	0.000007029
35	8	-0.00000897	-0.000002684	-0.000006709
36	8	-0.00000873	-0.000000401	-0.000000121
37	1	-0.000001559	-0.000002026	-0.000003899

Sum of electronic and thermal Free Energies= -1418.021774 (a.u.) Zero-point correction= 0.279921 (Hartree/Particle)

FA-ketyl-radical

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Z
1	6	-0.000003172	0.000000813	0.000004359
2	6	-0.000005348	-0.000001155	-0.000012110
3	6	0.000003066	-0.000000245	0.000004117
4	6	0.000001755	0.000000294	0.000003831
5	6	-0.000004857	-0.000001292	-0.000008257
6	6	0.000002147	-0.000000178	0.000002016
7	6	0.000011281	0.000004851	-0.000001851
8	8	0.000006027	0.000001441	0.000011669
9	6	0.000004723	-0.000003175	0.000008286
10	6	-0.000004444	0.000003982	-0.000006018
11	6	-0.000020746	-0.000007736	0.000008581
12	6	0.000010881	-0.000000558	-0.000020293
13	6	-0.00000885	0.000005895	0.000009469
14	6	-0.000005774	-0.000003078	0.000002613
15	6	0.000001591	0.000002152	-0.000001975
16	6	0.000006750	0.000003043	-0.000003760
17	17	0.00000387	0.000000182	-0.000004710
18	6	-0.000002967	-0.000000757	-0.000004302
19	8	0.00000355	0.000000563	0.000000938
20	6	-0.000000956	-0.000005321	-0.000004537
21	8	0.000000466	-0.000001918	0.000002822
22	1	0.000002381	-0.00000095	-0.000003139
23	1	-0.000001931	0.000001030	-0.00000855
24	1	0.000001281	0.00000873	0.000000457
25	1	0.00000370	0.000001781	0.000000150
26	1	-0.00000233	0.000002108	0.000001458
27	1	-0.000001696	-0.000001760	0.000000179
28	1	-0.000000918	-0.000000184	0.000001936
29	1	-0.00000390	0.000000557	0.000000159
30	1	0.000001738	0.000000041	0.00000003

31	1	0.000001627	0.00000243	-0.00000021
32	1	0.00000301	-0.000000468	-0.00000087
33	1	-0.00000408	-0.000000726	0.000001186
34	1	-0.000000189	-0.000000429	0.000001344
35	1	0.00000765	-0.000000631	0.00000843
36	1	-0.00000297	-0.000000635	0.000001012
37	8	0.000003040	-0.000001688	0.000003673
38	1	-0.000005721	0.000002182	0.000000816

Sum of electronic and thermal Free Energies=-1418.548137(a.u.) Zero-point correction=0.293739 (Hartree/Particle)

FA-biradical

Center	Atomic	Forces (Hartrees/Bohr)			
Number	Number	Х	Y	Z	
1	6	0.000001345	-0.000002276	-0.000000913	
2	6	-0.000000738	0.000000248	0.000002367	
3	6	0.000000178	0.000001957	-0.000000984	
4	6	-0.000000224	0.000002660	-0.000002409	
5	6	0.00000254	-0.00000258	0.000000451	
6	6	-0.000001918	-0.000001529	0.000001131	
7	6	0.000003126	-0.000003047	0.00000294	
8	8	-0.000008302	0.000002005	-0.000002969	
9	6	0.00000241	-0.000000526	-0.000008679	
10	6	0.000003613	0.000001494	0.000006493	
11	6	-0.000000423	-0.000001243	0.000000751	
12	6	0.00000974	-0.000001536	0.000001135	
13	6	0.000000927	-0.000000570	0.000001237	
14	6	-0.000001146	-0.000000482	-0.000000498	
15	6	-0.000001501	0.00000767	-0.000002042	
16	6	-0.000001125	0.00000089	-0.000000533	
17	17	-0.000001312	0.00000838	-0.000001297	
18	6	0.000002406	0.00000396	0.00000844	
19	1	-0.00000849	0.000003948	-0.000001612	
20	1	0.00000341	0.000002129	-0.000000775	
21	1	0.000000531	-0.000003978	0.000001900	
22	1	0.00000389	-0.000002850	0.000000775	
23	1	0.000002654	-0.000002281	0.000002675	
24	1	-0.000002555	0.000000509	-0.000002000	
25	1	-0.000003131	0.000001378	-0.000002864	
26	1	0.000001670	-0.000001431	0.000001770	
27	1	-0.000000973	0.000002280	0.00000766	
28	1	-0.000000567	0.000000952	-0.000002935	
29	1	-0.000003919	0.000003075	-0.000002675	
30	1	0.000005268	0.000002311	-0.000002562	
31	1	0.000005739	0.000003039	0.000004550	
32	1	-0.000001501	0.000000983	0.000001993	
33	8	0.000000587	-0.000004352	0.000004874	
34	1	-0.00000058	-0.000004699	0.000001741	

Sum of electronic and thermal Free Energies=-1229.301508(a.u.) Zero-point correction=0.265362 (Hartree/Particle)

FA-carbanion

Center	Atomic	Forces (Hartrees/Bohr)			
Number	Number	Х	Y	Z	
1	6	-0.000005948	0.000004141	0.000005976	
2	6	0.000026203	0.000009025	-0.000021128	
3	6	-0.000011313	-0.000006995	0.000005619	
4	6	-0.000008547	0.000001285	-0.000002306	
5	6	0.000020280	0.000010977	-0.000016739	
6	6	-0.000004250	-0.000000974	0.000000562	
7	6	-0.000022529	0.000000928	0.000031705	
8	8	0.000006164	-0.000007558	-0.000005116	
9	8	-0.000022297	-0.000005366	0.000017979	
10	6	0.000013573	0.000011275	-0.000001282	
11	6	0.000006743	0.000003763	-0.000006202	
12	6	0.000010807	0.000006205	-0.000015747	
13	6	-0.000006188	-0.000003520	0.000000550	
14	6	-0.000003581	-0.000001327	0.000003337	
15	6	-0.000001213	-0.000003156	0.000007471	
16	6	0.00000756	-0.000004164	-0.000004032	
17	6	0.000004403	-0.000003920	0.000001839	
18	17	0.000002240	-0.000003205	-0.000001543	
19	6	-0.000002267	-0.000000955	0.000006045	
20	1	0.00000302	0.000000223	-0.000000672	
21	1	0.00000885	-0.000000119	0.000001950	
22	1	0.000001358	-0.000001145	-0.000001078	
23	1	-0.000001021	0.000004166	0.00000309	
24	1	0.00000078	-0.000001036	0.000001709	
25	1	0.000001501	0.000000160	0.000001135	
26	1	0.00000288	-0.000002710	0.000002052	
27	1	0.000002088	-0.000002696	-0.000000487	
28	1	0.000007289	0.000001759	-0.000005482	
29	1	-0.000005621	0.000003136	0.000001066	
30	1	-0.000001244	-0.000002362	-0.000004923	
31	1	-0.000004538	-0.000004197	-0.000002109	
32	1	-0.000004136	-0.000003504	0.000005883	
33	1	-0.000000264	0.000001864	-0.000006339	

Sum of electronic and thermal Free Energies=-1228.772942(a.u.)

Zero-point correction=0.251430 (Hartree/Particle)

enolate 3⁻ anion

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Ζ
1	6	0.000037593	0.000015217	0.000027115
2	6	-0.000091565	-0.000006524	-0.000020097
3	6	0.000007233	-0.000023352	0.000008847
4	6	0.000051718	0.000003411	-0.000002011
5	6	-0.000077529	0.000024329	-0.000007630
6	6	0.000008519	-0.000016131	-0.00000226
7	6	0.000115862	-0.000012433	-0.000028648
8	8	0.000040170	-0.000008009	0.000003689
9	6	-0.000012970	0.000045164	0.000031692
10	6	-0.000028910	-0.000022264	-0.000016499
11	6	0.000004092	-0.000014974	-0.000005109
12	6	0.000061634	-0.000010022	0.000018410
13	6	-0.000038288	0.000016777	-0.000006666
14	6	0.000029890	-0.000032747	-0.000001371
15	17	-0.000029112	0.000008518	-0.000000195
16	1	-0.000020206	0.000002618	0.000000212
17	1	-0.000021850	0.000019837	-0.000003163
18	1	-0.000000516	-0.000018183	0.00000360
19	1	0.000003934	0.000003424	-0.000011324
20	1	0.000005365	0.000012903	0.000006250
21	1	-0.000006383	-0.00000684	-0.000002198
22	1	-0.000002819	0.000001121	-0.00000037
23	1	-0.000008091	0.000005690	0.000002966
24	8	-0.000027771	0.000006311	0.000005632

Sum of electronic and thermal Free Energies=-1110.968978 (a.u.) Zero-point correction= 0.171848 (Hartree/Particle)