A quantitative ionicity scale for liquid chloride salts

Authors: Petri Ingman^a, Gordon W. Driver^{*b}

Affiliations:

^aInstrument Centre/Department of Chemistry, University of Turku, FIN-20014, Turku,

Finland.

^bDepartment of Chemistry, Chemical-Biological Center, Umeå University, SE-90187 Umeå, Sweden.

Contact details: gordon.driver@chem.umu.se and petri.ingman@utu.fi

Supporting information:

Table of Contents:

1. Materials(2)
2. Methods(2)
2.1 Experimental(2)
2.2 Calculations(5)
2.2.1 Correlation times and $ C_Q (^{35}C\Gamma)$ (5)
2.2.2 Anisotropic rotational diffusion coefficients(6)
2.2.3 Friction coefficients(6)
2.2.4 Diffusion coefficients(6)
3. References(6)

1. Materials:

[Hmim]Cl was synthesized according to a modified literature procedure, such that the 1:1 salt was obtained.¹

2. Methods:

2.1 Experimental:

³⁵Cl relaxation experiments performed with [Hmim]Cl were carried out with Bruker AVANCE 600 MHz (B_0 = 14.1 T) and 500 MHz (B_0 =11.7 T) NMR spectrometers using Bruker's standard 5 mm Z-gradient BBO probe. The operating frequencies for ³⁵Cl were 58.80 and 49.00 MHz, respectively, and for ¹³C 150.90 MHz and 125.76 MHz. ¹H DOSY measurements were carried out with Bruker AVANCE 400 MHz (B_0 = 9.4 T) with similar 5 mm Z-gradient BBO probe. The resonance frequency for proton was 399.75 MHz.

The spin-lattice relaxation time, T_1 , was measured by the inversion recovery pulse sequence $(180^\circ - \tau - 90^\circ - RD)$ with relaxation delay RD > $10T_1$. ¹³C relaxation measurements were made under inverse gated Waltz decoupling. 90° pulses for both nuclei were equal or less than 10 µs. Sixteen τ values were used to acquire ³⁵Cl relaxation data. Number of scans varied from high temperature 400 scans to 20,000 near T_1 minimum where the broadening of the ³⁵Cl signal made observations more demanding. The total experiment time for one relaxation measurement was few minutes at high temperatures and 1.7 h at low ones. Twenty two τ values and 32 scans were used to acquire the ¹³C data. Sixteen dummy scans were used to compensate the possible warming of the sample due to the decoupling. The total experiment time for one relaxation measurement of ¹³C was 3.5 h. T_1 relaxation experiments of ¹³C were measured in triplicate as were T_1 experiments of ³⁵Cl, at fixed temperatures. However, T_1 of ³⁵Cl for the temperature dependence plot was measured only once at every temperature.

Data was processed using area-fit in Bruker's T_1 module of the Xwinnmr or TopSpin program. There was no evidence of non-exponential recovery in either case. We estimate the error for experimental T_1 of ¹³C to be better than 10%. Due the very short T_1 and broad peak of ³⁵Cl, the errors increased when $T_1 < 0.1$ ms and, therefore, the maximum error for ³⁵Cl experimental data is 10-15 % over the whole temperature range.

The Arrhenius type equation, $T_1 = T_{10} \exp^{\frac{E_a}{RT}}$, was fitted to high temperature points of the ln(T_1) vs. 1000/T plot, where T is the temperature, as given in Figure 1 below. The line on the low temperature points is drawn using the same fitted equation with the negative slope,

$$\frac{-E_a}{R}$$
.

Figure 1. Arrhenius plot of 35 Cl⁻ variable temperature T_1 data.

The spin-spin relaxation time, T_2 , was determined from half-height of the line width. Because of the broad ³⁵Cl lines, we assumed the inhomogeneity of the magnetic field have not much effect on the line width. Therefore, $T_2 = 1/(\pi \Delta v_{1/2})$ where $\Delta v_{1/2}$ is the line width at the half-height of the peak.²

2D-DOSY measurements were made with the stimulated echo pulse program with bipolar gradient pulses and a longitudinal eddy current delay (ledbpgp2s from Bruker pulse sequence library). The 90°-pulse for proton was 8.1 μ s and we used 12 ms sine shaped gradients. The FIDs were collected into 32k data points leading to 2.5 s acquisition time. The relaxation delay was also 2.5 s. The diffusion time was 200 ms. The gradient strength was increased from 5% to 95% of the maximum strength of 53.5 G cm⁻¹ in 64 steps with signal average of 4 scans for every step. The total experiment time was about 22 minutes.

4

FIDs were apodized with exponential multiplication (LB = 1) and zero filled before Fourier transform. Diffusion coefficients and DOSY displays were obtained using Bruker's DOSY module of the Xwinnmr or TopSpin program.

Temperature was controlled by a Bruker BVT-3000 temperature unit. The correct temperature was set with a Bruker standard calibration samples of 80% glycol in [D6]DMSO and 4% of methanol in methanol-D₄. The temperature was let to stabilize an hour before the measurement. The accuracy of the sample temperature has been estimated to be 1° .

2.2 Calculations:

2.2.1 Correlation times and $|C_Q|(^{35}Cl^{-})$:

 $|C_Q|(^{35}\text{Cl}^-)$ values were determined by first solving the T_1 relation (Equation 1) over two magnetic fields (11.7 T, and 14.1 T), at the specified temperatures, for the corresponding correlation time, τ_Q . We employed the following relation shown in Equation 1,

$$\frac{R_{1,500}}{R_{1,600}} = \frac{8UU^2 + VV^4 (32UU^2 + 20) + VV^2 (40UU^2 + 25) + 5}{25UU^2 + 20UU^4 + VV^2 (32UU^4 + 40UU^2 + 8) + 5}$$
(1)

Equation 1. Rate equation used to solve for $|C_Q|({}^{35}C\Gamma)$ at various temperatures.

We used values of $R_{1,n} = \frac{1}{T_{1,n}}$ (for T_1 at n = 500 MHz, 600 MHz), and substituted UU= $\omega_{500}\tau_Q$

and VV= $\omega_{600}\tau_{Q}$, to obtain τ_{Q} . Once the correlation time was found at each temperature,

 $|C_Q|(^{35}\text{Cl}^-)$ was easily obtained. Where T_2 values were used in conjunction with T_1 values, we followed a procedure reported in reference 3.

<u>2.2.2 Anisotropic rotational diffusion coefficients</u> for $[Hmim]^+$ in Table 2 of the main text were obtained using a method described in reference 4.

<u>2.2.3 Friction coefficients</u> in Table 2 of the main text were calculated according to equations given in reference 5 using parameters given in Table 1.

IL	T / K	$V_{\rm m}/{\rm dm}^3~{\rm mol}^{-1}$	Reference	$\sigma/\mathrm{mS\ cm}^{-1}$	Reference
[Hmim]Cl	373	0.103	this work	4.146	this work
[C ₂ mim]Cl	377	0.134 ^{<i>a</i>}	6-8	31.88	9

Table 1. Parameters required for calculation of friction coefficients.

^{*a*} Calculated from densities reported in given references, extrapolated to 377 K. T is the temperature, $V_{\rm m}$ is the molar volume and σ is the specific conductivity.

The density of [Hmim]Cl was determined using a 2.00 mL volumetric flask, calibrated with distilled water. Samples were added to the mark and weighed using an analytical balance, in triplicate, over three temperatures, in the range 298.25- 346.65 K. The value at 373 K was obtained by extrapolation. The specific conductivity of [Hmim]Cl was obtained from variable temperature microwave dielectric relaxation spectroscopy (DRS) measurements, described in reference 10 over the temperature range 303 - 353 K, with extrapolation to 373 K.

<u>2.2.4 Diffusion coefficients</u> were obtained for Cl⁻ in this work according to $D_{\text{rot.}} = \frac{1}{6\tau_{Q}}$

(rotational) and $D_{\text{trans.}} = \frac{2a_{\text{Cl}}^2}{9\tau_Q}$ (translational),¹¹ with $a_{\text{Cl}} = 1.81 \text{ x } 10^{-8} \text{ cm.}$

3. References:

- 1. G. Driver and K. E. Johnson, *Green Chem.*, 2003, **5**, 163-169.
- 2. J. D. Decatur and T. C. Farrar, J. Phys. Chem., 1990, 94, 7391-7394.
- 3. C. E. Keller, B. J. Piersma, G. J. Mains and W. R. Carper, *Inorg. Chem.*, 1994, **33**, 5601-5603.
- 4. G. W. Driver and P. Ingman, *ChemPhysChem*, 2011, **12**, 757-760.
- 5. C. T. Moynihan, in *Ionic Interactions: From Dilute Solutions to Fused Salts*, ed. S. Petrucci, Academic, New York, 1971, vol. 1, pp. 261-238.
- 6. T. Chen, M. Chidambaram, Z. Liu, B. Smit and A. T. Bell, *J. Phys. Chem. B*, 2010, **114**, 5790-5794.
- 7. G.-C. Tian, D. Wang and Y.-D. Li, *Adv. Mat. Res.*, 2012, **457-458**, 249-252.
- 8. G. Raabe and J. Kohler, J. Chem. Phys., 2008, 128, 154509-154507.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

- 9. J. Vila, L. M. Varela and O. Cabeza, *Electrochim. Acta*, 2007, **52**, 7413-7417.
- 10. M.-M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver and H. Weingärtner, *J. Chem. Eng. Data*, 2011, 1494-1499.
- 11. A. Abragam, *The Principles of Nuclear Magnetism*, Oxford University Press, London, 1961.