Electronic Supplementary Information (ESI)

A Computational Investigation of Ring-Shift Isomerization of

sym-Octahydrophenanthrene into sym-Octahydroanthracene Catalyzed by Acidic

Zeolites

Xiaowa Nie,^{ab} Michael J. Janik,^{*bc} Xinwen Guo^a and Chunshan Song^{*abc}

 ^aState Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116012, China
^bEMS Energy Institute, PSU-DUT Joint Center for Energy Research, and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
^cDepartment of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA

Fig. S1 The terminology used in definition of the *S*-value for the level/model combination in an ONIOM scheme. (Blue: silicon; red: oxygen; pink: aluminum; white: hydrogen.) S(level) = E(level, real) - E(level, model)

Fig. S2 Optimized geometries of *sym*-OHP and *sym*-OHA molecular configurations in the gas phase. (a) Gas phase structures of *sym*-OHP conformers

sym-Chair-Chair

asym-Chair-Chair

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Fig. S4 Atom label reference structures.

(a) reference structures for the "six-membered ring" mechanism

(b) reference structures for the "five-membered ring" mechanism

Fig. S5 Optimized geometries of all the intermediate species included in the "six-membered ring" mechanism of ring-shift isomerization of *sym*-OHP into *sym*-OHA catalyzed by the 120T Al-H-MOR. Only the adsorbates and 14T quantum region are shown for clarity.

Int_3

Int_4

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is O The Owner Societies 2012

Fig. S6 Energy profiles based on the "six-membered ring" and "five-membered ring" mechanisms with the 120T Al-H-MOR starting and ending with the adsorbed states calculated with the B3PW91 and PBE functionals.

(a) with B3PW91 functional (six-membered ring mechanism)

(c) with B3PW91 functional (five-membered ring mechanism)

Fig. S7 Energy profiles for the proposed "six-membered ring" and "five-membered ring" mechanisms with the 120T Al-H-MOR starting and ending with the adsorbed states computed with 6-311g(d,p) and 6-311+g(d,p) basis sets.

(c) with 6-311g(d,p) basis set (five-membered ring mechanism)

Fig. S8 Optimized geometries of all the stationary points and transition states included in the both mechanisms of ring-shift isomerization of *sym*-OHP into *sym*-OHA catalyzed by the 140T Al-H-FAU. Only the adsorbates and 14T quantum region are shown for clarity.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Int_4

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2012

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Fig. S9 Relative energy profiles for ring-shift isomerization of *sym*-OHP into *sym*-OHA in the "six-membered ring" mechanism catalyzed by the 120T B-H-MOR, Ga-H-MOR, and 140T Al-H-FAU.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is O The Owner Societies 2012

Fig. S10 Calculated equilibrium compositions (%) of the *sym*-OHP and *sym*-OHA conformers in the temperature range of 175 to 325 °C.

Geometric parameter	sym-	-OHP	sym-OHA		
	DFT(B3LYP)	ONIOM(B3LYP:UFF)	DFT(B3LYP)	ONIOM(B3LYP:UFF)	
C ₁ -C ₂	1.42	1.42	1.41	1.40	
C ₁ -C ₃	1.52	1.52	3.83	3.83	
C ₁ -H ₁	3.17	3.12	1.09	1.09	
C ₂ -H ₁	3.45	3.41	2.15	2.15	
C ₄ -H ₂	1.08	1.08	3.78	3.74	
O ₁ -H ₁	0.98	0.97	3.27	3.22	
O ₁ -Al	1.84	1.80	1.80 1.84		
O ₁ -Si ₁	1.68	1.67	1.68	1.67	
O ₂ -Al	1.68	1.65	1.68	1.66	
O ₂ -Si ₂	1.59	1.57	1.59	1.57	
Si ₁ -O ₁ -Al	129.1	125.8	128.4	125.2	
Si ₂ -O ₂ -Al	148.1	145.9	148.9	146.7	
Si ₃ -O ₃ -Al	132.5	131.5	132.6	131.5	
Si ₄ -O ₄ -Al	156.8	154.0	156.8	154.0	

Table S1 Key geometric parameters of the optimized *sym*-OHP and *sym*-OHA adsorption states with both the DFT(B3LYP) and ONIOM(B3LYP:UFF) approaches.

Table S2 The evaluations of the ONIOM(DFT/UFF) energies on the adsorbed reactant (*sym*-OHP), intermediate species, and the adsorbed product (*sym*-OHA) over the 120T Al-H-MOR. Energies are given in Hartree.

Species	ONIOM(DFT:UFF)		
Species	∆S-value		
sym-OHP	0.03958330		
Int_1	0.04049951		
Int_2	0.04040031		
Int_3	0.03918137		
Int_4	0.04004935		
Int_4'a	0.04272292		
Int_4'b	0.04417378		
sym-OHA_a	0.03998476		
sym-OHA_b	0.03977902		

Table S3 The adsorption stability of all the possible adsorbed structures of *sym*-OHP and *sym*-OHA over the 120T Al-H-MOR. Energies are given in kcal mol^{-1} .

sym-OHP					
Structure	Relative Energy	Structure	Relative Energy	Structure	Relative Energy
sym-Chair-Chair(1)	0.29	sym-Boat-Boat(1)	6.11	Chair-Boat(1)	3.06
sym-Chair-Chair(2)	1.19	sym-Boat-Boat(2)	5.39	Chair-Boat(2)	2.95
asym-Chair-Chair(1)	0.18	asym-Boat-Boat(1)	5.12	Chair-Boat(3)	3.16
asym-Chair-Chair(2)	0	asym-Boat-Boat(2)	5.05	Chair-Boat(4)	3.17
Chair-Boat(5)	3.34	Chair-Boat(6)	3.01	Chair-Boat(7)	3.55

Chair-Boat(8)	3.54				
sym-OHA					
Structure	Relative Energy	Structure	Relative Energy	Structure	Relative Energy
sym-Chair-Chair(1)	0	sym-Boat-Boat(1)	6.46	Chair-Boat(1)	3.15
sym-Chair-Chair(2)	0.57	sym-Boat-Boat(2)	6.09	Chair-Boat(2)	2.64
asym-Chair-Chair(1)	0.30	asym-Boat-Boat(1)	6.08	Chair-Boat(3)	3.28
asym-Chair-Chair(2)	0.18	asym-Boat-Boat(2)	5.33	Chair-Boat(4)	2.68

Table S4 Imaginary vibrational modes for all the transition states created in the "six-membered ring" and "five-membered ring" mechanisms of ring-shift isomerization of *sym*-OHP into *sym*-OHA over different acidic zeolite catalysts.

Transition States	Al-H-MOR	B-H-MOR	Ga-H-MOR	Al-H-FAU	
Transition States	imaginary vibrational frequency (cm ⁻¹)				
TS_1	-1431.84	-1508.27	-1379.66	-1233.68	
TS_2	-158.71	-169.16	-133.42	-168.97	
TS_3	-249.36	-289.39	-230.28	-207.27	
TS_4	-111.88	-304.16	-206.64	-99.81	
TS_5a	-1388.36	-889.62	-1332.95	-1315.41	
TS_5b	-1220.18	-998.05	-1216.68	-883.45	
TS_F1	-286.07	-273.15	-289.53	-301.21	
TS_F2	-296.20	-300.78	-299.75	-310.98	