Background Spectra and Phonon Peaks:

In this part, background spectrum with laser and without laser is shown as FigureSI-1, FigureSI-2 and FigureSI-3.

Figure-SI1: Background Spectra

Figure-SI2: Background Spectra

Figure-SI3: Background Spectra and phonon peaks between range 1500cm⁻¹ and 1200cm⁻¹

Calculation of Penetration Depth at 1064 nm photon on silicon:

The absorption coefficient (α) for a 1064 nm photon is about^{1, 2} 10 cm⁻¹.

Light intensity at any depth can be calculated as follows:

$$I(z) = I_0 \ e^{-\alpha z}$$

Where z is the depth, I(z) is the light intensity at a given depth, I_0 is the initial light intensity.

Penetration depth is defined as the depth at which initial intensity reduces to 1/e (37%).

As a result:

$$100 = 37 e^{(-10 \times z)}$$

From this equation z can be calculated as 0.99 mm.

In addition, our Silicon wafer is 530 μ m thick so at the bottom of wafer, the relative intensity can be calculated to amount to58%.

Fitting of Free Carrier Absorption Region:

In order to fit the free carrier absorption to the spectrum, the wavenumber range 1500 cm^{-1} to 2800 cm^{-1} (wavelength range 6.66 μ m – 3.57 μ m) is selected, because in this region there is no phonon absorption.

The Drude model states that $\alpha = k \lambda^2 N$

We measure Absorbance with our setup and we can relate absorbance as:

 $A = L \alpha$

where L is the interaction distance between attenuated total light and laser light.

Finally;

$$A = L \ k \ \lambda^2 \ N$$

Fitting function of $y = a x^2$ is used, where a = L k N

For fitting, The Levenber-Marquart (LMA) error minimization algorithm is used and Fitted functions can be seen in Figure-3 in black.

Some parametes of the fit are shown below for the mentioned interval wavenumber range 1500 cm^{-1} to 2800 cm^{-1} (wavelength range 6.66 μ m – 3.57 μ m)

Illumination Power (mW)	$L k N (cm^{-2})$	Standard Error	Adj. R-Square
50	5.05142 x 10 ⁻⁵	2.35432 x 10 ⁻⁷	0.9095
90	9.22127 x 10 ⁻⁵	4.34271 x 10 ⁻⁷	0.92127
130	1.88363 x 10 ⁻⁴	3.94204 x 10 ⁻⁷	0.97444

Fitted Curve: $y = a \lambda^2$ (a refers to L k N (cm⁻²) in the Drude model)

Calculating Phonon Absorption:

The phonon absorption peaks are seen in FigureSI-4 These spectra are obtained by subtracting free carrier absorption plots (shown as black in Figure-2 from experimental data in Figure-2. After that, background correction is performed.

Figure SI-4: Phonon Absorption peaks1. M. A. Green and M. J. Keevers, *Prog Photovoltaics*, 1995, **3**, 189-192.

 R. Schnabel, M. Britzger, F. Bruckner, O. Burmeister, K. Danzmann, J. Duck, T. Eberle, D. Friedrich, H. Luck, M. Mehmet, R. Nawrodt, S. Steinlechner and B. Willke, in *8th Edoardo Amaldi Conference on Gravitational Waves*, eds. Z. Marka and S. Marka, lop Publishing Ltd, Bristol, 2010, vol. 228.