Background Spectra and Phonon Peaks:

In this part, background spectrum with laser and without laser is shown as FigureSI-1, FigureSI-2 and FigureSI-3.

Figure-SI1: Background Spectra

Figure-SI2: Background Spectra

Figure-SI3: Background Spectra and phonon peaks between range $1500 \mathrm{~cm}^{-1}$ and $1200 \mathrm{~cm}^{-1}$

Calculation of Penetration Depth at 1064 nm photon on silicon:

The absorption coeffient (α) for a 1064 nm photon is about ${ }^{1,2} 10 \mathrm{~cm}^{-1}$.
Light intensity at any depth can be calculated as follows:

$$
I(z)=I_{0} e^{-\alpha z}
$$

Where z is the depth, $I(\mathrm{z})$ is the light intensity at a given depth, I_{0} is the initial light intensity.
Penetration depth is defined as the depth at which initial intensity reduces to $1 / \mathrm{e}(37 \%)$.
As a result:

$$
100=37 \mathrm{e}^{(-10 \times \mathrm{z})}
$$

From this equation z can be calculated as 0.99 mm .
In addition, our Silicon wafer is $530 \mu \mathrm{~m}$ thick so at the bottom of wafer, the relative intensity can be calculated to amount to58\%.

Fitting of Free Carrier Absorption Region:

In order to fit the free carrier absorption to the spectrum, the wavenumber range $1500 \mathrm{~cm}^{-1}$ to $2800 \mathrm{~cm}^{-1}$ (wavelength range $6.66 \mu \mathrm{~m}-3.57 \mu \mathrm{~m}$) is selected, because in this region there is no phonon absorption.

The Drude model states that $\alpha=\mathrm{k} \lambda^{2} N$
We measure Absorbance with our setup and we can relate absorbance as:

$$
\mathrm{A}=\mathrm{L} \alpha
$$

where L is the interaction distance between attenuated total light and laser light.
Finally;

$$
\mathrm{A}=\mathrm{Lk} \lambda^{2} N
$$

Fitting function of $y=\mathrm{a}^{2}$ is used, where $\mathrm{a}=\mathrm{L} \mathrm{k} N$
For fitting, The Levenber-Marquart (LMA) error minimization algorithm is used and Fitted functions can be seen in Figure-3 in black.

Some parametes of the fit are shown below for the mentioned interval wavenumber range $1500 \mathrm{~cm}^{-1}$ to $2800 \mathrm{~cm}^{-1}$ (wavelength range $6.66 \mu \mathrm{~m}-3.57 \mu \mathrm{~m}$)

Fitted Curve: $\mathrm{y}=\mathrm{a} \lambda^{2}\left(\mathrm{a}\right.$ refers to $\mathrm{Lk} N\left(\mathrm{~cm}^{-2}\right)$ in the Drude model $)$

Illumination Power (mW)	$\mathrm{Lk} N\left(\mathrm{~cm}^{-2}\right)$	Standard Error	Adj. R-Square
50	5.05142×10^{-5}	2.35432×10^{-7}	0.9095
90	9.22127×10^{-5}	4.34271×10^{-7}	0.92127
130	1.88363×10^{-4}	3.94204×10^{-7}	0.97444

Calculating Phonon Absorption:

The phonon absorption peaks are seen in FigureSI-4 These spectra are obtained by subtracting free carrier absorption plots (shown as black in Figure-2 from experimental data in Figure-2. After that, background correction is performed.

Figure SI-4: Phonon Absorption peaks1. M. A. Green and M. J. Keevers, Prog Photovoltaics, 1995, 3, 189-192.
2. R. Schnabel, M. Britzger, F. Bruckner, O. Burmeister, K. Danzmann, J. Duck, T. Eberle, D. Friedrich, H. Luck, M. Mehmet, R. Nawrodt, S. Steinlechner and B. Willke, in 8th Edoardo Amaldi Conference on Gravitational Waves, eds. Z. Marka and S. Marka, Iop Publishing Ltd, Bristol, 2010, vol. 228.

