Supplementary Information: Rapid Determination of Entropy and Free Energy of Mixtures from Molecular Dynamics Simulations with the Two-Phase Thermodynamic Model

Pin-Kuang Lai, Chieh-Ming Hsieh, and Shiang-Tai Lin*

5

Table S1. Comparison of excess Gibbs free energy of equimolar LJ mixtures from 2PT with three different methods for estimation of the partial molar volume, one-fluid, molecular size, and Kirkwood-Buff theory, and thermodynamic integration (TI)

TI ^{35,36}	od-Buff	Kirkwo	ar size	Molecul	e-fluid	On	
G ^{ex} (J/mol)	S.D. ^a	G ^{ex} (J/mol)	S.D. ^a	G ^{ex} (J/mol)	S.D. ^a	Gex(J/mol)	id
-42	5	-46	5	-44	7	-66	1
-129	8	-130	9	-118	6	-196	2
-288	8	-313	8	-260	5	-442	3
-356	14	-381	15	-319	15	-574	4
-66	7	-63	7	-26	5	-104	5
-228	21	-219	22	-119	20	-374	6
-430	16	-437	17	-259	4	-736	7
-634	39	-791	43	-457	11	-1195	8
-84	31	-70	31	-1	29	-133	9
-284	15	-281	16	-99	9	-492	10
-523	59	-624	65	-323	28	-1066	11
-772	30	-1005	33	-629	21	-1727	12
0	3	1	3	1	2	6	13
26	12	19	12	19	8	23	14
99	14	91	14	92	13	96	15
209	3	208	2	208	2	216	16
350	13	336	13	336	13	336	17
-20	10	-29	10	-22	13	-35	18
-21	12	-27	12	-19	9	-36	19
22	13	10	13	20	13	2	20
82	16	67	16	77	14	61	21
192	24	139	24	149	25	132	22
-235	22	-329	23	-262	10	-470	23
-318	8	-423	8	-358	10	-570	24
-392	9	-508	11	-446	6	-642	25
-417	24	-567	25	-511	13	-691	26
-450	16	-613	16	-559	19	-750	27
-228	21	-219	22	-120	20	374	28
-288	30	-300	31	-202	20	-449	29
-317	6	-326	6	-239	7	-482	30
-322	13	-379	15	-2.9	6	-531	31
-340	32	-395	33	-318	17	-529	32

	One	-fluid		Size-ratio			Kirkwood-Buff			
id	$f_{\rm A} = f_{\rm B}$	$V_A = V_B$	$f_{\rm A}$	$f_{\rm B}$	VA	VB	f_{A}	$f_{\rm B}$	VA	VB
1	0.41	74	0.46	0.38	50	97	0.46	0.38	51	96
2	0.40	103	0.49	0.33	47	158	0.48	0.33	52	153
3	0.38	158	0.53	0.28	43	273	0.50	0.28	62	254
4	0.38	188	0.56	0.25	42	334	0.53	0.26	61	315
5	0.60	96	0.65	0.56	65	127	0.64	0.56	74	118
6	0.57	123	0.66	0.50	56	190	0.65	0.50	71	175
7	0.55	158	0.69	0.44	50	266	0.66	0.45	72	244
8	0.53	202	0.71	0.39	45	358	0.67	0.39	83	320
9	0.63	95	0.68	0.58	64	126	0.67	0.59	75	115
10	0.60	120	0.69	0.52	55	185	0.67	0.53	72	167
11	0.56	151	0.70	0.45	48	255	0.67	0.46	70	232
12	0.54	190	0.71	0.40	42	338	0.68	0.40	66	314
13	0.56	59	0.56	0.56	59	59	0.56	0.56	60	59
14	0.54	58	0.54	0.54	58	58	0.54	0.54	59	57
15	0.51	56	0.52	0.51	56	56	0.52	0.51	58	54
16	0.49	54	0.50	0.49	54	54	0.49	0.49	57	52
17	0.48	53	0.49	0.47	53	53	0.49	0.48	56	50
18	0.54	68	0.58	0.52	56	80	0.55	0.52	59	77
19	0.52	66	0.54	0.49	55	78	0.54	0.50	58	75
20	0.49	65	0.52	0.46	53	76	0.52	0.47	58	72
21	0.48	63	0.50	0.45	52	74	0.50	0.45	57	70
22	0.45	62	0.48	0.42	51	73	0.47	0.43	56	68
23	0.49	103	0.58	0.41	47	159	0.57	0.42	58	148
24	0.47	101	0.56	0.38	46	156	0.55	0.39	57	146
25	0.44	100	0.54	0.36	46	154	0.52	0.36	57	143
26	0.42	98	0.51	0.34	45	152	0.50	0.34	56	141
27	0.40	97	0.50	0.32	44	150	0.49	0.32	56	139
28	0.57	123	0.66	0.50	56	190	0.65	0.50	71	175
29	0.54	118	0.64	0.46	54	183	0.62	0.47	70	167
30	0.52	114	0.62	0.43	52	176	0.60	0.44	66	162
31	0.49	111	0.59	0.40	51	171	0.58	0.1	65	156
32	0.46	108	0.56	0.38	49	166	0.55	0.39	63	152

Table S2. The Fluidicity parameter and partial molar volume (Å ³ /particle) of each component in a binary equimolar LJ mixture from differ	ent
methods	