Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

The Conversion of CO₂ and CH₄ to Acetic Acid over the Au-exchanged ZSM-5 catalyst: A Density Functional Theory Study

Wasinee Panjan^{*a,b,c,d*}, Jakkapan Sirijaraensre^{*a,b,c,d*}, Chompunuch Warakulwit^{*a,b,c,d*}, Piboon Pantu^{*a,b,c,d*} and Jumras Limtrakul^{**a,b,c,d*}

s Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Supporting Information

10

15

20

25

30

35

40

45

This journal is © The Royal Society of Chemistry [year]

Reaction Step	Electron Configuration of Au	NBO Charge of Au	
Au-ZSM-5	[core]6S(0.26)5d(9.93)6p(0.07)6d(0.01)7p(0.01)	0.723	
	Homolytic mechanism		
CH4_Ads.	[core]6S(0.50)5d(9.78)6p(0.09)7p(0.01)	0.626	
TS_1.1	[core]6S(0.66)5d(9.54)6p(0.11)7p(0.01)	0.679	
INT_1.1	[core]6S(0.76)5d(9.41)6p(0.14)6d(0.01)7p(0.01)	0.690	
TS_1.2	[core]6S(0.79)5d(9.45)6p(0.11)6d(0.01)	0.652	
INT_1.2	[core]6S(1.05)5d(9.66)6p(0.08)7p(0.01)	0.213	
	Heterolytic mechanism		
CH ₄ _Ads.	[core]6S(0.50)5d(9.78)6p(0.09)7p(0.01)	0.626	
TS_1	[core]6S(0.66)5d(9.75)6p(0.09)7p(0.01)	0.496	
INT_1.2	[core]6S(1.05)5d(9.66)6p(0.08)7p(0.01)	0.213	

Tabel SI1. The electron configurations of Au and charge in various steps along with the methane activation.

Tabel SI2. The electron configurations of Au and charge in various steps along with the acetic formation.

Reaction Step	Electron Configuration of Au	NBO Charge of Au	
	The mono-functional gold catalyst		
Au-ended_Co-Ads.	[core]6S(1.04)5d(9.68)6p(0.08)7p(0.01)	0.201	
TS_CO ₂ -insertion	[core]6S(0.76)5d(9.79)6p(0.10)7p(0.01)	0.335	
INT_2	[core]6S(0.85)5d(9.61)6p(0.10)7p(0.02)	0.432	
TS_H-transfer	[core]6S(0.66)5d(9.46)6p(0.11)7p(0.01)	0.766	
CH ₃ COOH_Ads.	[core]6S(0.58)5d(9.73)6p(0.09)7p(0.01)	0.583	
	The concerted bi-functional mechanism		
H-ended_Co-Ads.	[core]6S(1.07)5d(9.68)6p(0.11)7p(0.01)	0.138	
TS_Concerted	[core]6S(0.68)5d(9.82)6p(0.07)7p(0.01)	0.428	
CH ₃ COOH_Ads.	[core]6S(0.58)5d(9.73)6p(0.09)7p(0.01)	0.583	

Parameters	CO ₂ _Ads.	Reaction Step					
		CH ₄ _Ads.	TS_1	TS_1.1	INT_1.1	TS_1.2	INT_1.2
Bond distance	es						
Au-O1	2.16	2.16	2.47	2.33	2.30	2.22	2.45
Au-O2	2.59	2.60	3.10	2.27	2.25	2.96	3.05
Al-O1	1.76	1.76	1.70	1.73	1.74	1.75	1.71
Al-O2	1.70	1.70	1.76	1.74	1.74	1.71	1.81
C1-H′		1.11	1.50	1.64	2.29	2.46	3.33
Au-C1		2.43	2.12	2.12	2.05	2.04	2.03
Au-H'		2.20	1.92	1.57	1.54	1.54	2.13
O2-H′		3.49	1.45	3.37	3.01	2.00	1.01
Au-O3	2.28						
Au-C2	3.10						
C2-O3	1.18						
C2-O4	1.16						
Bond angles							
O1-Au-O2		62.7	51.7	65.1	66.4	56.3	53.4
01-Al-O2		92.8	92.1	90.9	91.3	94.1	91.9
C1-Au-H'		27.1	43.3	50.1	77.9	85.2	106.6
Au-O3-C2	124.0						
O3-C2-O4	179.2						

Table SI3. The main geometry parameters of the optimized structures of the methane activation step. Bond distances are in Å and bond angles are in degrees.

The C-H bond distances of isolated methane are 1.09 Å.

The C=O bond distances of isolated CO2 are 1.17 Å.

30

5

10

15

20

Table SI4. The main geometry parameters of the optimized structures of the acetic formation step via the mono-functional gold catalysis. Bond distances are in Å and bond angles are in degrees.

			Reaction Step		
Parameters	Au-ended_ Co-Ads.	TS_ CO ₂ -insertion	INT_2	TS_ H-transfer	CH ₃ COOH_Ads.
Bond distances					
Au-O1	3.13	2.37	2.25	2.14	2.15
Au-O2	3.25	3.17	3.05	2.82	2.65
Al-O1	1.66	1.71	1.72	1.78	1.77
Al-O2	1.57	1.82	1.81	1.70	1.70
Au-C1	2.02	2.47	3.12	3.23	3.28
Au-H'	2.27	2.33	2.20	1.59	2.75
O2-H′	1.00	0.99	1.00	2.42	4.07
C2-O3	1.17	1.24	1.34	1.38	1.42
C2-O4	1.16	1.23	1.22	1.21	1.20
C1-C2	5.44	1.63	1.51	1.50	1.49
O3-H′	3.25	5.17	3.50	1.71	0.97
Au-O3	2.43	2.98	2.01	2.08	2.17
Bond angles					
O1-Au-O2	38.6	51.6	54.6	59.8	62.5
O1-Al-O2	98.6	90.7	91.3	94.0	93.5
O3-C2-O4	178.6	138.7	119.4	115.3	118.9

The C=O bond distances of isolated CO_2 are 1.17 Å.

The C-O, C=O, C-C, O-H bond distances of isolated acetic acid are 1.36, 1.21, 1.50, 0.97 Å, respectively.

10

15

20

25

30

Table SI5. The main geometry parameters of the optimized structure of the acetic formation step, the concerted bi-functional mechanism. Bond distances are in Å and bond angles are in degrees.

	Reaction Step				
Parameters –	H-ended_Co-Ads.	TS_Concerted	CH ₃ COOH_Ads.		
Bond distances					
Au-O1	2.43	2.82	2.15		
Au-O2	3.08	3.92	2.65		
Al-O1	1.71	1.70	1.77		
Al-O2	1.81	1.78	1.70		
Au-C1	2.03	2.19	3.28		
Au-H'	2.41	3.81	2.75		
O2-H′	0.99	1.17	4.07		
C2-O3	1.17	1.24	1.42		
C2-O4	1.17	1.19	1.20		
C1-C2	3.58	1.89	1.49		
O3-H′	2.10	1.25	0.97		
Au-O3	3.38	4.25	2.17		
Bond angles					
O1-Au-O2	54.2	42.2	62.5		
01-Al-02	94.0	98.6	93.5		
O3-C2-O4	178.9	140.0	118.9		
H'-O3-C2	121.8	124.1	108.5		

Fig. SI1 Shows the Wiberg bond order of the important bonds along with the methane activation reaction: (a) via the homolytic mechanism, (b) via the heterolytic mechanism.

25

20

5

10

Fig. SI2 Shows the Wiberg bond order of the important bonds along with the acetic formation via the mono-functional gold catalysis.

5

10

15

H-ended_Co-Ads.

CH₃COOH_Ads.

Fig. SI3 Shows the Wiberg bond order of the important bonds along with the acetic formation via the concerted bi-functional mechanism.

5

10