Supporting information

1 <u>breakthrough setup</u>

Fig. S.1 shows a simplified scheme of the breakthrough setup.

Fig. S.1 Simplified scheme of the breakthrough setup; MFC: Mass flow controller

A stainless steel column with a length of 30 cm and an internal diameter of 0.216 cm was filled with MIL-47 or NH₂-MIL-47 pellets having a diameter ranging from 500 to 650 µm. These pellets were obtained by pressing the powder of the materials into a solid disc at high pressure (740 bar), followed by crushing and sieving to obtain the desired fraction. This column was placed in a ventilated thermostatted oven. A Valco four-way valve was used to switch the gas stream flowing through the column from pure helium to a desired adsorbate mixture containing CO₂, and CH₄. Gas flows were regulated with mass flow controllers (MFCs) (Gefran Flowcor). Temperature of the experiments was 30 °C, total flow 10 Nml/min and a total pressure of 1 bar was maintained. The gas flow at the outlet of the column was

measured on-line by means of a mass spectrometer (MS). In order to obtain a linear correlation between the measured MS signals and the flow rates, a permanent N_2 dilution flow of 100 Nml/min was added after the column outlet and before the MS inlet. Before every measurement, the material was regenerated by heating it in a helium flow (10 Nml/min) to 393 K and maintaining this temperature for half an hour.

The amount adsorbed for gas a, q_a , was calculated using the method of Malek and Farooq¹:

The adsorption separation factor α between two components i and j is defined as:

$$\alpha = \frac{q_i/x_i}{q_j/x_j}$$

2 <u>Pulse gas chromatography:</u>

Pellets of 400-500 µm, obtained by pressing the amino-MIL-47(V) powder into a solid disc followed by crushing and sieving, were packed into a stainless steel column (1/8") with a length of 0.30 m and an internal diameter of 0.216 cm. Pulse chromatographic experiments were performed using this column to determine low coverage adsorption properties of methane and CO₂. A HP-4890 gas chromatograph (GC) equipped with a thermal conductivity detector (TCD) was used. In situ activation of the adsorbent was performed under constant Helium flow by raising the temperature from ambient to 393 K at a rate of 1 K/min and maintaining this temperature overnight. Helium was used as the carrier gas. Henry adsorption constants were determined from the first moment of the response curve on the TCD after injection of a component. Adsorption enthalpy was obtained from the temperature dependence of the Henry adsorption constants using the van't Hoff equation. Different temperatures were used to perform these experiments, ranging from 297K till 353K. The Henry constants of the corresponding temperatures can be found in table S1.

	25°C	30°C	35°C	40°C	45°C	50°C	60°C	80°C
CO_2	1.14 10 ⁻⁵	9.83 10 ⁻⁶	8.40 10 ⁻⁶	7.19 10 ⁻⁶	6.28 10 ⁻⁶	5.47 10 ⁻⁶	4.27 10 ⁻⁶	2.92 10 ⁻⁶
CH_4	2.72 10 ⁻⁶	2.56 10 ⁻⁶	2.23 10 ⁻⁶	2.08 10 ⁻⁶	1.93 10 ⁻⁶	1.85 10 ⁻⁶		

Table S1: Henry constants (mol/kh/Pa) of CO₂ and CH₄

3 Additional characterization results of NH₂-MIL-47 and MIL-47

4 <u>Periodic VASP calculations:</u>

The geometry of the periodic system with inclusion of the guest molecules is optimized by means of the Vienna Ab Initio Simulation Package (VASP)²⁻⁵ making use of the PBE exchange correlation

functional^{6,7}. The unit cell has been doubled along the **a** direction to prevent self interactions between the adsorbates.

For those simulations, we restricted the Brillouin zone to the Γ -point. The projector augmented wave approximation (PAW)⁸ together with a plane wave basis set was used. A kinetic energy cut off of 600 eV has been chosen for all the calculations. Throughout the different optimization steps, the convergence criterion for the electronic self-consistent field (SCF) problem is set to 10⁻⁶ eV. The quasinewton algorithm has been chosen as optimizer to converge the atomic forces below 0.01 eV/Å. To improve convergence, a Gaussian smearing of 0.05 eV was also applied⁵. The van der Waals corrections for the PBE functional are used throughout the optimization, as implemented in the 5.2.11 edition of VASP. The MIL-47 and the NH₂-MIL-47, were initially constructed with similar cell parameters as the MIL-53(Fe) series and then subjected to a cell optimization with those criteria⁹. Almost orthogonal unit cells ($\alpha = \beta = \gamma = 90^{\circ}$) were obtained (MIL-47: **a** = 6.752, **b** = 17.541, **c** = 12.274; NH₂-MIL-47: **a** = 6.725, $\mathbf{b} = 17.861$, $\mathbf{c} = 11.836$). Afterwards, the unit cell is doubled along **a** in order to prevent self interactions between the adsorbates during the adsorption study. Such interactions can occur if the adsorbate would interact too strongly with their image in the neighbouring unit cells along the channel of the pores. The exact cell vectors were maintained during the adsorption study and are given for all adsorption geometries in Section S.5 and S.6. The fact that the cell parameters resemble more the MIL-47 as, is due to the initial construction of MIL-47 and NH₂-MIL-47 from the MIL-53(Fe) series⁹. However this is not a disadvantage, because the slightly more narrow pores will give optimal stabilization for the adsorbates and might even represent the small unit cell contraction at low adsorbate loadings.

5 Adsorption geometries of CO₂ and CH₄ on the (amino-) terephthalate linkers

5.1 CH₄ adsorbed on terephthalic acid

23

С	-1.240634	0.411548	0.132918
С	-0.037406	1.111631	0.194383
С	1.179641	0.451217	0.027648
С	1.189068	-0.917087	-0.197954
С	-0.014180	-1.618776	-0.254762
С	-1.231743	-0.956839	-0.092616
С	-0.100960	2.572429	0.485077
Η	2.105688	1.008278	0.083593
Η	2.117426	-1.459335	-0.328418
С	0.051820	-3.089312	-0.494373
Н	-2.157386	-1.515176	-0.139979
Η	-2.168533	0.952445	0.272630
0	-1.162797	-3.667299	-0.529779
0	1.068751	-3.710555	-0.642164
Η	-1.026291	-4.610716	-0.688315
0	1.114802	3.145720	0.548803
0	-1.116951	3.189415	0.657412
Η	0.979296	4.081018	0.750775
С	0.119366	0.962557	3.453616
Η	0.081273	-0.036662	3.019359
Η	-0.775674	1.515797	3.167791
Η	0.171017	0.890220	4.539338
Н	1.003275	1.482012	3.081887

 5.2 CO_2 adsorbed on terephthalic acid

С	0.513018	0.099661	0.999451
0	1.639240	0.298748	0.834661
0	-0.614709	-0.097892	1.151938
С	-1.379445	0.652116	4.365846
С	-0.177822	1.340561	4.208275
С	1.023395	0.647724	4.048554
С	1.015775	-0.740239	4.042031
С	-0.187580	-1.427634	4.195891
С	-1.386535	-0.734562	4.360719
С	-0.225734	2.831737	4.217473
Н	1.949350	1.194454	3.925320
Н	1.931229	-1.305734	3.915920
С	-0.142367	-2.918538	4.165807
Н	-2.312444	-1.282419	4.475334
Н	-2.294654	1.218591	4.485261
0	-1.348035	-3.480715	4.361913
0	0.853468	-3.564852	3.985269
Н	-1.228064	-4.438833	4.322635
0	0.982159	3.392041	4.025241
0	-1.223774	3.479872	4.375644
Η	0.861343	4.350630	4.046705

5.3 CH₄ adsorbed on amino-terephthalic acid

25

С	1.286667	-0.380832	-0.337777
---	----------	-----------	-----------

- C 0.536843 -1.530835 -0.044615
- C -0.836807 -1.489693 0.050473
- C -1.483934 -0.264649 -0.158899

С	-0.773314	0.881871	-0.449273
С	0.633817	0.858232	-0.540648
С	-2.971917	-0.237314	-0.044617
0	-3.494173	0.989065	-0.240150
N	1.302547	2.019855	-0.774163
С	2.754450	-0.464912	-0.430220
0	3.238480	-1.697394	-0.189777
0	-3.653085	-1.195612	0.197539
0	3.498383	0.453953	-0.696353
Н	-1.296695	1.819418	-0.593433
Η	1.066251	-2.461881	0.108461
Η	-1.421935	-2.370114	0.278539
Η	4.199026	-1.641783	-0.276567
Н	-4.452357	0.907332	-0.146426
Н	2.296944	1.994360	-0.940159
Н	0.779236	2.838774	-1.030118
С	0.183467	1.130271	2.794636
Η	0.443139	1.131153	3.852807
Η	0.945964	1.666880	2.229620
Η	0.119413	0.103343	2.433202
Η	-0.780350	1.620140	2.655771

 $5.4\ \text{CO}_2$ adsorbed on amino-terephthalic acid

С	-1.257221	-0.172109	0.051650
С	-0.530139	-1.370941	0.055206
С	0.848584	-1.374754	0.034419
С	1.521043	-0.148127	0.016983

С	0.829080	1.048778	0.019600
С	-0.577992	1.067496	0.033221
С	3.013729	-0.173505	-0.000131
0	3.560893	1.055944	-0.032708
N	-1.228337	2.272538	0.107161
С	-2.733787	-0.206175	0.068695
0	-3.237192	-1.446658	0.190291
0	3.675861	-1.174731	0.012355
0	-3.460284	0.757369	-0.023986
Н	1.371385	1.986633	0.024319
Н	-1.078295	-2.303407	0.073212
Н	1.417778	-2.294462	0.034537
Н	-4.199410	-1.359158	0.195085
Н	4.520265	0.941007	-0.037541
Н	-2.220016	2.284151	-0.084855
Н	-0.697378	3.096813	-0.122276
С	-0.927316	1.776866	2.975627
0	0.007968	2.455197	2.998321
0	-1.858191	1.093102	2.976657

6 Adsorption geometries of CO₂ and CH₄ within MIL-47 and MIL-47-NH₂

presented in POSCAR format, can be opened by molden¹⁰.

6.1 CH₄ adsorbed within MIL-47

VOCH

1.00000000000000

 13.5306685888651756
 0.0057087870689278
 -0.0003857084078472

 0.0065556329053147
 16.2735692524908728
 0.0003113444397211

 -0.0005690401423668
 0.0000998239597547
 13.9790236252066276

 8
 40
 65
 36

Direct

0.3409376006500007 0.2472985233615148 0.7374556019388231 0.3985597953804295 0.7473079847899508 0.2377676806936730 0.5909131297715451 0.2472646625040766 0.7648561169680802 0.6485814732996348 0.7472157177821805 0.2650184845470963 0.8409272529689035 0.2472896623729724 0.7374194454184604 0.8985517391994642 0.7472265132427259 0.2374217311927755 0.0909376424280735 0.2472747028326491 0.7648169922288435 0.1485555642965539 0.7473023865373084 0.2648625464581714 0.7251532152135308 0.2472063181294424 0.6973487509689298 0.3980355887119510 0.1619898153556839 0.6521273514213092 0.3149504434149739 0.1584971517856467 0.8330017591067044 0.5143224471529050 0.7474688813948620 0.1976724133680403 0.4751548005202984 0.2473427528851104 0.8049814830307819 0.2642748969604196 0.7472545131494007 0.3051328181760400 0.3416977757877714 0.8329808464273287 0.1527416943394559 0.6475067736386154 0.3331932416307966 0.8495830849194910 0.5917772660847270 0.6614618914949325 0.3498729968467808 0.5917024673710463 0.8322139222217703 0.3508538104926291 0.6481648082383876 0.1622960013619034 0.8505573358556242

> 0.3418221222233709 0.6621268544721879 0.1519818233887257 0.3975232398708791 0.3329354535254170 0.6523189893034878 0.4247617863939284 0.8353162260624393 0.3341495702003441 0.5644936298069488 0.3354248801384951 0.6686992368648880 0.6748499749064459 0.6588651553797784 0.1689878196045034 0.6746274110954036 0.8360849877993914 0.1695324908564207 0.5648510926601680 0.1581954144389498 0.6697241788796843 0.4248360170796207 0.6585153199781001 0.3331425980958020 0.3145480530071888 0.3357646983093486 0.8332502568459851 0.2251660294991009 0.2472149703864472 0.6973640034409663 0.8980441466856908 0.1621649060451696 0.6518897006017219 0.8149611617627132 0.1583883700052792 0.8328864998427312 0.0143323857359363 0.7472500655549855 0.1973534740687597 0.9751749957540443 0.2473454321155900 0.8049256885207453 0.7643808248424182 0.7471818227439494 0.3050397187793910 0.8414286283218186 0.8323437235741022 0.1519124174813159 0.1475751765316914 0.3332350063735820 0.8495931156856423 0.0919058383566186 0.6616689677466073 0.3499702754376359 0.0914097577969379 0.8326131038801532 0.3501028059551340 0.1481303991601623 0.1622543518150669 0.8505063110451567 0.8418101486159030 0.6615534498682885 0.1524068900052522 0.8975145410381767 0.3329690733682365 0.6522786011509724 0.9245437254808285 0.8361073712112043 0.3328867110066941 0.0644992400841792 0.3354306915339516 0.6686533294773581 0.1749419511993839 0.6588325655777248 0.1690592681033262 0.1747533371829115 0.8359825408734840 0.1692733672839031 0.0648516814105118 0.1582970185841270 0.6695101097276686 0.9249634684626840 0.6588784799562781 0.3333513827927211 0.8144874933836272 0.3356809202749751 0.8333043364052365 0.4031831967738100 0.0334973221496702 0.5210584037584961

> 0.5807336407249851 0.0248398211563263 0.5473668446937549 0.4891959383096051 0.0622764411907092 0.5662078394291788 0.4835415736166827 0.1325271446975491 0.6342454029781588 0.3363352462149535 0.9602070369113159 0.0199546682864161 0.6530808855014996 0.4605741107203757 0.9822017892824640 0.5864659728305747 0.5332057082073189 0.4812485794602543 0.5862306460957634 0.9592928622854493 0.4838020499926248 0.6533354638250193 0.0345284913070993 0.9826006183584949 0.3363287332941888 0.5346160136097438 0.0192523058710698 0.4031203184531822 0.4603045609175072 0.5196967686272718 0.6587266729994160 0.9690887407549806 0.0463462212266959 0.3306825194035928 0.4692231557616607 0.9554618136762068 0.4088357005181463 0.5254324537125377 0.4555946902747803 0.4086896395719610 0.9679403625394221 0.4575046847100050 0.3308763273573236 0.0255865692977596 0.9561287783291700 0.6587153121746513 0.5259066866192377 0.0460564651494234 0.5808115209842142 0.4680643031413997 0.5453308629844701 0.2503748223371635 0.9317359258141648 0.0654608469941128 0.7389952790177550 0.4317719114952416 0.9368123678439054 0.5005193592817135 0.5621672423521243 0.4361313117014204 0.5002596210990773 0.9306385448560264 0.4384863442933075 0.7393182706485711 0.0629469642251951 0.9370795527592647 0.2504631100727322 0.5633415837309986 0.0648133263364045 0.4890818065498591 0.4313388590976951 0.5648863670113007 0.2560877697925968 0.8618735972282788 0.1340673245402244 0.7331486266087935 0.3618617919609141 0.8683127313618410 0.5062232399402721 0.6323912282659331 0.3681513184366632 0.5060656838527829 0.8610056139033988 0.3696247138781510 0.7336806280176461 0.1329073812647410 0.8686049642587443 0.2562638331695034 0.6331343861846065 0.1335256833247638

> 0.4831896712821488 0.3615677524490264 0.6335729801250816 0.9032097525484263 0.0344996405082799 0.5197288503094424 0.0807309686024154 0.0256161994788839 0.5460796549581832 0.9892184106055585 0.0630059512733450 0.5651348344621628 0.9835682398466845 0.1328512553909440 0.6337589634310408 0.8361552695313541 0.9599175890875822 0.0196761674950077 0.1532202794103023 0.4607693883414760 0.9820878600898906 0.0864209782040524 0.5339071711905128 0.4821625405731034 0.0861614912712610 0.9602512444976955 0.4822496656186934 0.1534174077687297 0.0346005911247979 0.9827232702975007 0.8362518431931543 0.5341772150837121 0.0197544298337935 0.9031987467872088 0.4603360904841370 0.5196080440561025 0.1588704720403035 0.9691965188914649 0.0465088241987575 0.8306195312714949 0.4688585441791902 0.9558756901755581 0.9088612188200255 0.5257514902453154 0.4558696376094798 0.9086364869734429 0.9691224360711199 0.4559060681730708 0.8307601619875081 0.0253529333105654 0.9559238663618251 0.1588720316858419 0.5261548843609057 0.0458697704780666 0.0807613462345768 0.4684911104755638 0.5458974977975461 0.7501792251381780 0.9315031452033837 0.0652065953600264 0.2390912633016276 0.4319907188655375 0.9366068125513046 1.0004981442067737 0.5628280005723687 0.4368664043669108 1.0001539622939717 0.9317203726268294 0.4368685633886396 0.2393819718789057 0.0630754200008615 0.9372232118412142 0.7503347340882435 0.5629802024625365 0.0651598364794481 0.9891055397897504 0.4314446064848659 0.5649580531116067 0.7558719606488428 0.8616168240839893 0.1337923810119085 0.2332072265227050 0.3619674950077844 0.8682391468265588 0.0063041172303868 0.6328258657577507 0.3684959007733842 0.0058426323234351 0.8617947149721206 0.3683689917408729

> 0.2336719000853164 0.1329709018791069 0.8686719153331366 0.7561627586772776 0.6328277692362585 0.1337705795549754 0.9831916848847823 0.3615842471494988 0.6335385556443415 0.4703121417852890 0.6882780378693505 0.6341779555196962 0.3329104852263454 0.0635415587506799 0.5363030489026658 0.6465261556907125 0.0480202657816842 0.5833039277573471 0.4065842300378885 0.9301407831377695 0.0352575863864636 0.5827388428598002 0.4307888484538458 0.9668119158085798 0.6568267304431947 0.5628801695622437 0.4656886599211250 0.6565216552482946 0.9293235187016735 0.4684520232656480 0.5831322526833310 0.0647106870682047 0.9674090374301371 0.4066555816537568 0.5644744908911795 0.0345017605461148 0.3326972806281269 0.4308062771646729 0.5354665258361510 0.5929324355637009 0.9462114789167015 0.0825353376195964 0.3964008614573188 0.4460684667259172 0.9193059147748759 0.3430421110480760 0.5488918573688335 0.4198335067568085 0.3429243084397321 0.9448264602846859 0.4214670641904502 0.3966598162859457 0.0485269950477689 0.9199715303472613 0.5929749980175100 0.5491143847053459 0.0821340011480139 0.6465713424063626 0.4447576198099831 0.5812908192420365 0.8329614493811466 0.0645364729081641 0.5350999932899867 0.1465345660132733 0.0486083288863972 0.5821657559639515 0.9063715388596442 0.9297692220740396 0.0348993327293820 0.0828896104038314 0.4309060499378874 0.9668533819872916 0.1567686556754287 0.5636909144451843 0.4668133577594280 0.1564061508215303 0.9302110775302538 0.4668815060479008 0.0831791901214082 0.0647046164797390 0.9674734988233709 0.9065890186325797 0.5639639511746420 0.0351443185476237 0.8328379141217979 0.4305723304855345 0.5349662597187265 0.0930877436807677 0.9462568588552420 0.0826626973862565

0.8963549847510184	0.4456653211014730	0.9197789412937861
0.8431312105084213	0.5490475067872901	0.4198445669473084
0.8428346627531975	0.9461403658968005	0.4198110195319227
0.8965633763497860	0.0482542085673818	0.9197668783948395
0.0931590396250217	0.5492985460549378	0.0820477380081765
0.1464896123836991	0.4452206986430486	0.5819497060262865
0.4678287927196283	0.6232396732180846	0.6548643922608929
0.4117788301786131	0.7007274281787512	0.5817668654249378
0.4593029760571864	0.7270316930399325	0.6975534840031341
0.5425220551681366	0.7018601672647945	0.6021225921793375

 $6.2\ \text{CO}_2$ adsorbed within MIL-47

V O C H

1.00000000000000

13.	5306	6858	88651756	0.00570878	70689278	-0.0003857	7084078472
0.0	0655	5632	9053147	16.273569252	24908728	0.0003113	3444397211
-0.0	00056	5904()1423668	0.000099823	39597547	13.9790236	6252066276
8	42	65	32				

Direct

0.3398825294465189	0.2484199744291142	0.7360735852687805
0.3984230457271967	0.7487083464660749	0.2359086338479766
0.5900190338228383	0.2491163386443221	0.7637253063342218
0.6484231060808940	0.7485582000634117	0.2636625950559596
0.8400383138524337	0.2483888662791151	0.7361447742684352
0.8984961260157185	0.7485111804400951	0.2361620125611406
0.0899892366154348	0.2484106407397255	0.7637152406502412
0.1484858086612024	0.7482301015730697	0.2635900031611515
0.7241746746172824	0.2491299763682141	0.6962004531319811
0.3972054758197314	0.1620425145362406	0.6522843188765706
0.3138707551478667	0.1609131383698501	0.8331770622885515
0.5142797351517953	0.7491426969551295	0.1960224255934584
0.4742582748458943	0.2491543043791409	0.8037147947827823
0.2642856858082170	0.7483107573092558	0.3035963866668520
0.3415174749725675	0.8346724480353626	0.1516447233279875
0.6465778470046484	0.3358259608554120	0.8476501325318939
0.5914986727525992	0.6621171124845853	0.3477056276956810
0.5914426894596968	0.8330271229613677	0.3501233987893275
0.6474144386240885	0.1646409942826875	0.8501974136452584
0.3415247353226587	0.6641097864050529	0.1494269327308060

> 0.3966726778002973 0.3326854067250818 0.6490012275215603 0.4245868751278611 0.8365708899421818 0.3327514239213653 0.5633414570185659 0.3375280946928925 0.6677193785240287 0.6747900954362329 0.6610137924469289 0.1666581231626917 0.6745302943237309 0.8382331663129956 0.1693227805337875 0.5641843802780949 0.1597312584066002 0.6687531789173020 0.4245705281480189 0.6594074881429758 0.3306242056281982 0.3136603058905452 0.3382490026953375 0.8299171702438278 0.2241542195185693 0.2477372921658728 0.6959470086551715 0.8971638556935627 0.1636726143401780 0.6501103468768086 0.8139029503954792 0.1589284500717352 0.8306682713165802 0.0142322227446072 0.7485849778168784 0.1960480055637926 0.9741819195543417 0.2483222305867074 0.8037137782344936 0.7641875326250049 0.7480304854676276 0.3037121560463223 0.8412831433166429 0.8341942276955945 0.1512849410716179 0.1469786136203916 0.3342460952589121 0.8482753877027103 0.0917076043270254 0.6625163446227096 0.3485411734719522 0.0914429318392146 0.8335069303833681 0.3492177009450133 0.1469151203039990 0.1634788391140767 0.8495968117640494 0.8417869980888719 0.6633720996680629 0.1504384532247603 0.8966187325852328 0.3345279489414234 0.6517770102737044 0.9245497975176388 0.8367882633541514 0.3321554308854631 0.0636648234205874 0.3364542727397661 0.6674713087187429 0.1748367742811718 0.6599092921353159 0.1677203883561425 0.1745336770842683 0.8370542998838477 0.1680372648038126 0.0638510289522925 0.1592002698529962 0.6686761700143095 0.9248157534402396 0.6596815196609693 0.3315446601305134 0.8138773027411043 0.3355660924604122 0.8337414867502971

> 0.6840570290008917 0.5318132656078035 0.7408919310060751 0.5177605775106484 0.5208042451747501 0.7881206733215494 0.4027988371492698 0.0340782185778449 0.5207199699853124 0.5805027660574440 0.0261850740081943 0.5461412809480921 0.4888351315851094 0.0631628447634240 0.5655951599939052 0.4829330459288199 0.1333448967735170 0.6337891484841034 0.3358642279826991 0.9624511187660314 0.0198354169706868 0.6530398061964698 0.4613726042375372 0.9820180979657075 0.5859146758505311 0.5323735198702665 0.4770433125394377 0.5860620082486216 0.9607559461763169 0.4823737307178129 0.6526378007753403 0.0362467663424768 0.9820701311478908 0.3350112602514965 0.5388901338974634 0.0133014204629637 0.4016739302046886 0.4622831141143788 0.5188214317505698 0.6583174851988847 0.9709654047457433 0.0460273422862360 0.3292165980104166 0.4736402101991609 0.9493037319301373 0.4075676709610198 0.5276809692381640 0.4550755015879509 0.4083621793928923 0.9686900781195322 0.4569260733817260 0.3302241846537985 0.0279640606799766 0.9562227357072586 0.6586393215253209 0.5273517626117403 0.0449912940569869 0.5800936361202927 0.4666990097262410 0.5404029481165313 0.2498605391749676 0.9333580331323693 0.0647238310288068 0.7389503957610726 0.4324055038798246 0.9367116158751566 0.4996981282967352 0.5631202847644786 0.4340417755541664 0.5000454324440006 0.9317746249957660 0.4373820482761065 0.7384790006613594 0.0647712651484570 0.9364017625438962 0.2500532262692130 0.5652917921694145 0.0622227115889280 0.4879015068782380 0.4316099272501056 0.5619231839427891 0.2557672903918721 0.8633139134763919 0.1330250524386494

> 0.7327717561124846 0.3627860058676932 0.8678736410192049 0.5058086884356698 0.6332857297482825 0.3658806251515019 0.5058329696153014 0.8620895123303030 0.3684972724837294 0.7327133273761347 0.1344485199298278 0.8674941842126194 0.2560286934590438 0.6347669781079577 0.1313468184346411 0.4819799084370573 0.3622041926506719 0.6311142993284891 0.9025454496739654 0.0349954014315097 0.5190034126543090 0.0800903554318970 0.0266400352597089 0.54531441765049390.9884459752569446 0.0638525730750609 0.5642941581290868 0.9826554527921449 0.1339438966512342 0.6326002994578211 0.8357896483768777 0.9622660999467492 0.0194593254593909 0.1532367041781795 0.4607781301853710 0.9823307809779804 0.0861152984923466 0.5339973124460916 0.4798534424091271 0.0857861037447747 0.9612017301098251 0.4815963726773798 0.1525235738705758 0.0358516761806311 0.9818294737080003 0.8361276982209384 0.5355775934791476 0.0182764772295208 0.9021786749088305 0.4628117427150689 0.5202191741004799 0.1581528043703381 0.9703303504575818 0.0454294009031213 0.8305213084220168 0.4697536326931330 0.9551276488256898 0.9080529169815559 0.5280146823499713 0.4562032392562244 0.9082268148336413 0.9695217590369269 0.4553277464208411 0.8300994093145250 0.0275161066950642 0.9554731446683213 0.1590519422934396 0.5260943924902222 0.0461845857638010 0.0802680721970572 0.4687135692898045 0.5437559229231991 0.7499174769926445 0.9336585642261986 0.0650027946902683 0.2383318698561751 0.4341529188701202 0.9337783033405179 1.0000437169448759 0.5638910270894965 0.4356788789819138 0.9998992277750489 0.9323756480698910 0.4362610103952234

> 0.2385206051979026 0.0649346980161697 0.9369001001508092 0.7502397321961275 0.5646618554782823 0.0634951692474085 0.9882791785693469 0.4328150496612047 0.5642096666271396 0.7557677885476611 0.8636736646971174 0.1334646033085050 0.2324592620670663 0.3639058433929810 0.8657545684632305 0.0060520939535171 0.6337078251610416 0.3670106772192339 0.0058409541946663 0.8625190746226920 0.3676475887599045 0.2326063982837752 0.1348183656129815 0.8683379564466678 0.7561224999487911 0.6347861406601628 0.1317149329187880 0.9823163305643998 0.3629359996299081 0.6327402172349247 0.6009632879621369 0.5259735308463791 0.7645107990944106 0.3324029097047893 0.0637528097789193 0.5363940739473263 0.6463543235825747 0.0495848867917993 0.5817942770240840 0.4062662221156515 0.9327432645101525 0.0354015506362812 0.5826616679789688 0.4314731626320629 0.9671360388406454 0.6566848355023530 0.5608168809632378 0.4601788410825933 0.6564636331039315 0.9311067331285297 0.4666469588659946 0.5823000746907067 0.0661686997914614 0.9667651468370236 0.4048115854749904 0.5704700132501475 0.0259165408278037 0.3309030851773615 0.4339928515192451 0.5360416212112672 0.5926034044537121 0.9479503856142953 0.0822380787438970 0.3941523167346668 0.4528828350700854 0.9100920820158989 0.3416153403267966 0.5523532774405923 0.4207080648457440 0.3425348609727372 0.9453579217289908 0.4211842829328056 0.3960073080088405 0.0513861586182777 0.9204883291719000 0.5928830084994858 0.5507588117197209 0.0808678398641430 0.6462134932085914 0.4419421431373673 0.5743188447620622 0.8321714687394147 0.0648380703152839 0.5343457157571823

0.14581299250177560.04987674447881200.58132688600637990.90613767469672670.93237628912378420.03479233271927750.08341614385795850.42929938977043650.96948674156148550.15674619391826670.56288668468371310.46345547905474910.15616179300139610.93137129703993280.46623284054005910.08212287759467460.06554736178982150.96621145367461900.90643150140935650.56560572195045930.03317187985293080.83151133224931040.43415149342925560.53696768767933730.09236823291984810.94688004744743080.08113742116803260.89614382341412880.44658617814311650.91882981528889350.84218950137970530.55215044336739270.42118155054452890.84249893937029790.94627390148154030.41934061573860480.89580922794152280.05051165035878380.91924130499942290.09395947121392060.54756422753772090.08472730268994810.14612373077121270.44462559324019320.5788460110505093

 6.3 CH_4 adsorbed within NH₂-MIL-47

V O N C H

1.000000000000000

1	3.4	9856	220	6702	23545	-0.0499106	6585101045	0.000415.	3708946451
_	0.0	6032:	516	9820	9909	16.370157	1256556981	-0.000074	8273775932
	0.00	00295	5620	0440	0902	-0.0002037	468052315	13.903092	8643390528
	8	40	8	65	44				

Direct

0.1082701253474209	0.7542881983870945	0.2337241777376844
0.2994101474218915	0.2537685236455631	0.7622670989975716
0.3583120713067098	0.7541998070924475	0.2674621481625296
0.5494023148251719	0.2537630724210425	0.7388522984669456
0.7993934940522801	0.2538165439087398	0.7621341644419415
0.6083050172591103	0.7542068906842532	0.2335681732653069
0.8582738725679803	0.7542141691123391	0.2675572353222324
0.0494151555317725	0.2536958653711075	0.7390984128370623
0.1338346093543039	0.6673465438588463	0.3312814294050010
0.1345923416590705	0.8442921814526698	0.3273990763277946
0.2730242730976294	0.3406749191096374	0.6654692202509320
0.2721427578886873	0.1637029893089010	0.6682943071939440
0.2251413287626605	0.7529072973310013	0.1954193837880318
0.3845902810047996	0.8446621896093780	0.1744312742357023
0.0498720134477939	0.8374506886779235	0.1479416925306974
0.0504242717962057	0.6681495608188027	0.1493225208256690
0.4339800741490694	0.2528521031575736	0.6960532953906234
0.5230329541609003	0.3405547742167961	0.8358067551503587
0.6055974174164284	0.1715838342087214	0.6497070138101481
0.5222564164686425	0.1636321110240977	0.8327494526038697

> 0.6839896979283331 0.2527123071362934 0.8049692458733696 0.7720998666319168 0.1642473937348273 0.6674183980319974 0.6054740324191000 0.3403749742437467 0.6544927626180552 0.6338115219336811 0.6674222302401841 0.3313326815227282 0.6344920003811492 0.8444124293116426 0.3269818359162643 0.7252002363371743 0.7527490928351815 0.1953579473941506 0.9751534205038138 0.7525669591506788 0.3057918680450175 0.4751915613869718 0.7525470966676748 0.3056683278578998 0.5500577948920038 0.8371463431339444 0.1474860424173430 0.5503936990868420 0.6680131273803640 0.1493327802371213 0.9340386619503660 0.2527351728747850 0.6961620079778461 0.8553607749551450 0.3401573319444353 0.8469361585726692 0.8553907303657513 0.1712510680026502 0.8509009102631773 0.7731744291047823 0.3409563275129351 0.6656325889411795 0.8003722333962386 0.6677510293952846 0.3513365575950025 0.7999567373205898 0.8369081850838211 0.3539833025479611 0.8838583881680644 0.6678952514915961 0.1692315533100111 0.8843647189841295 0.8448639029426140 0.1747941020048024 0.1840157235537688 0.2527530887232252 0.8052008990786702 0.0230455421391807 0.3407247075493096 0.8357024074679518 0.1056502355736391 0.1711233233932350 0.6505689031828422 0.0219551054619318 0.1639004778223306 0.8334250242681311 0 1053437973214403 0 3400662748058272 0 6542834404880252 0.3553268221175181 0.3402836873720908 0.8467886824601671 0.3558342191649425 0.1713745334067226 0.8508557426388863 0.3003963110637619 0.6676678562723074 0.3512786239062706 0.3001309468250608 0.8368794035190709 0.3540320380446891 0.3838090098303301 0.6678021148890646 0.1692145691393200

> 0.5190368897676573 0.0849300437471906 0.5105510999520451 0.7693892647350407 0.0861979065709728 -0.0079667171539885 0.5282875023105480 0.5431076766105011 0.3995746779346458 0.7780910295926819 0.5438728139542804 0.1007414430111383 0.0186137637817446 0.0834579955864432 0.5128511430947968 0.2680557471617365 0.0825405516401310 -0.0130853645689691 0.0282509611408400 0.5429874854262545 0.3994127400262222 0.2784205464454437 0.5431186462698442 0.1017175776813754 0.1965162466693845 0.4378519857591042 0.5646466585796218 0.1122947012686510 0.4594908107473525 0.5136196088365563 0.1127642054331576 0.5258483599036401 0.4483747988893624 0.2037316566259400 0.5703856412614275 0.4365569451603072 0.2876135707584526 0.5476319895461254 0.4907012689594776 0.2859124819173695 0.4822221111657089 0.5536186782343278 0.2135706899974010 0.6393298783381184 0.3692632652724800 0.2147882693361479 0.8681290801464682 0.3675786386191660 0.2082212989326027 0.9381525607631698 0.4356101397696661 0.1188229719140904 0.9788651908143214 0.4446535486753656 0.1911325346127878 0.3678524092645554 0.6329134096211413 0.1901782974390365 0.1391249946600846 0.6315292984219451 0.1924561893791761 0.0703057557937256 0.5634076309519157 0.2820463345947912 0.0272336976327385 0.5531821095481607 0.4647251727328542 0.8684521286619039 0.1340808366834492 0.4581609785150158 0.9384255271557663 0.0659676811596596 0.3685142979800731 0.9786296245560373 0.0561243710083719 0.4411673210209683 0.3679117212987774 0.8682337458275123 0.4466014103351963 0.4379779979386452 0.9363826546213432 0.3624135338106807 0.4595724360492727 0.9875047799926817

> 0.6901828230760843 0.1397988511768532 0.6304393632124458 0.6925528301156252 0.0712118506206218 0.5619272181906426 0.7821009160913386 0.0281447878283319 0.5517655983245977 0.4403095133846224 0.1392108188494062 0.8697367460951837 0.4425329172420288 0.0704606533506459 0.9379492696778253 0.3575080086544117 0.0453821110312844 0.9923948656570705 0.6912594753206660 0.3681510062541851 0.6331212360058571 0.6966131837000447 0.4381499076117423 0.5648855709287400 0.6123728347210063 0.4597023720520770 0.5138401549763643 0.6127944318789729 0.5260267846905714 0.4485579458010734 0.7037274143030646 0.5706028489002658 0.4367589604718225 0.7876300740050249 0.5479449102071619 0.4909279046575791 0.7859816369358620 0.4825619274258270 0.5538785010326984 0.7135413373929330 0.6394525237538037 0.3693629933518905 0.7146237466688499 0.8682737651279236 0.3672501055494548 0.7080730857070523 0.9385007653165266 0.4349435068610525 0.6187374948120193 0.9793095519245701 0.4438189678756364 0.4635541453131508 0.6397240699912594 0.1313217334973761 0.4537387274834656 0.5707305599129450 0.0641140757499757 0.3628554293170371 0.5260375927140226 0.0525915025482388 0.9411618027190504 0.3679649646841678 0.8682335521886794 0.9465795487114695 0.4380797658341120 0.9363243842580488 0.8622491204425532 0.4599949693522001 0.9870173708080631 0.9399517681564120 0.1394993204579197 0.8702960391423477 0.9422284755485273 0.0710450234485507 0.9389797414807284 0.8579761355095016 0.0473521031467288 -0.0046712123907056 0.9635938235842753 0.6398375598764320 0.1312969603642355 0.9537594718547294 0.5708628524119600 0.0640556485254506

> 0.8627033054936574 0.5264787211915832 0.0520969226718994 0.9645423372672518 0.8688128939415641 0.1346715494622581 0.9579731943936397 0.9390335198288076 0.0669325059904121 0.8689813633509377 0.9805271288970284 0.0589351852416504 0.6078894275732081 0.0465506270957554 0.5067910524265928 0.5418001632618699 0.9629193063327548 0.0118413108608297 0.7915174505148639 0.9628704194897992 0.4893683258233733 0.5375808061266499 0.5480288055076872 0.0098779497246130 0.1077554395044266 0.0457093051283010 0.5082293940428596 0.5359262112243348 0.4824932567030880 0.9471326614661900 0.2915417596068773 0.9621774537590879 0.4904728456055418 0.5323875232948552 0.0278986840058485 0.9490309785706612 0.0314157564133173 0.0273167916448898 0.9483450674674787 0 0360808995262734 0 4822878445771112 0 9475108051284850 0.0377605771710895 0.5478274366981589 0.0102420195811726 0.0409031325854356 0.9623129252126901 1.0111213819082276 0.7458212584540015 0.1440863062758241 0.3024237767858211 0.8444498192653920 0.0475513055303661 0.5962076978513603 0.6109106695693750 0.9294920218912150 1.0187970516348031 0.7938516534968381 0.4252387802428573 0.9762444918703829 0.8544022522176513 0.5851560394074320 0.4826733780277946 0.8604175195639677 0.9290544720520258 0.4831107208395412 0.6042918851093959 0.5853553153900606 0.0178633522513838 0.5440893013678560 0.4247633327995778 0.5244831794031922 0.8059599273907213 0.9609050740442151 0.1025330552715742 0.6005901433469472 0.4656239431300624 0.9049461344963918 0.5554094128900272 0.9589799177105683 0.4011008066784000 0.5949904618243449 0.0475630947107790 0.9050612038380463

> 0.8506972412963180 0.4657093943494519 0.5959927177684061 0.3443403433510684 0.0465525880630291 0.5977722576799420 0.1094201043796740 0.9278899364363333 1.0166659789348966 0.2941468816313496 0.4245706177046413 0.9770380096367999 0.3544142134452673 0.5848113743687031 0.4824763643842896 0.3604031791165044 0.9283098307523836 0.4841974602143231 0.1046562200306464 0.5848677339426612 0.0186001630510574 0.0439712058232539 0.4246033557742089 0.5242649236571018 0.3049616473964753 0.9580332932385593 0.0983666102495280 0.1008895476090669 0.4651516746505850 0.9056860394358566 0.0555053584626451 0.9585973260474833 0.4018776520467687 0.0933763607640467 0.0459906409608826 0.9029596897048489 0.3506324771446551 0.4653156183317959 0.5956976024597330 0.0244521139030199 0.5959010967764204 0.3614855145136551 0.9654619864825094 0.5114100239806009 0.4147314139765286 0.5244688477290868 0.5959600626618138 0.3615342863698420 0.4655677807725494 0.5113787872468932 0.4147158637476259 0.2157088611939334 0.5113202319237988 0.0867576792810656 0.2745797322399814 0.5960790736570081 0.1395517544999277 0.7153645216324389 0.5121270042327307 0.0856914840240341 0.7743525465960216 0.5967184539765085 0.1388044543636817 0.7112317164299261 0.0639321191472968 0.0301193526789561 0.7581562275790875 0.1300079557069149 0.9416028146557319 0.2099425860277886 0.0604335637174660 0.0251605138437801 0.2575386302738548 0.1277339480504552 0.9380702681440848 0.9607593600361639 0.0619377792829419 0.4737907777214581 0.0079689105390364 0.1285535386042176 0.5617979431836568 0.4604571372719241 0.0616637569699770 0.4739196972793048

0.5080944987525119 0.1291683620059794 0.5605347323249951

 $0.7668464200797488 \ \ 0.1614582995486859 \ \ 0.2288707621984702$

 $0.6650310489159003 \quad 0.1470303304755047 \quad 0.3103443910506413$

 $0.7703529481992918 \ \ 0.0815916171539133 \ \ 0.3174408135860472$

 $0.7807384134500327 \ \ 0.1863350129600362 \ \ 0.3537623814868684$

 $6.4\ \text{CO}_2$ adsorbed within NH_2-MIL-47

VONCH

1.00000000000000

13	8.498:	5622	2067	0235	545	-0.04991	06585	101045	0.00	04153	70894	46451
-0	.0603	3251	698	2099	009	16.37015	571256	556981	-0.00	00748	2737	75932
0	.0002	956	2044	4009	02	-0.00020	374680	52315	13.90	30928	64339	90528
8	42	8	6	54	0							

Direct

0.1029535633472480	0.7582858545684444	0.2347255338176447
0.2938701704339048	0.2579351666810518	0.7629820818351037
0.3528340339589706	0.7584743676175377	0.2685728089201997
0.5439179627924912	0.2582804202045181	0.7397292976689671
0.7939175376344949	0.2581349877757626	0.7627247781871277
0.6027666549970203	0.7586761507940686	0.2338671677045475
0.8527685212458269	0.7584454174271605	0.2679705365850324
0.0438868201213600	0.2578971997594689	0.7397425301167262
0.1287780537391015	0.6727585152933737	0.3336895411379109
0.1288247658923775	0.8492984482337590	0.3270168243609420
0.2674871660926354	0.3450236351897806	0.6664686871258468
0.2666272695100558	0.1679720614312290	0.6688469480294038
0.2198054422900998	0.7568590910191744	0.1964698879608469
0.3790808356297536	0.8482863825225703	0.1743462169588707
0.0438249761968291	0.8401851384668232	0.1473971200196725
0.0459837403776902	0.6706101273256301	0.1519412420559558
0.4284775386869229	0.2570544865188317	0.6969335792339728
0.5173870882350409	0.3459655760154212	0.8356756575323802
0.6001929196843494	0.1756139061203440	0.6511026160063011
0.5167379186320304	0.1686619388031302	0.8344346163611979

> 0.6785218993874897 0.2575731620651662 0.8056834877714346 0.7665305231339524 0.1673726468199735 0.6696583876710499 0.5996397928024587 0.3446947604245358 0.6550597915069971 0.6279800996212249 0.6716135330174559 0.3313454881478319 0.6291360702355533 0.8486732567645524 0.3275515652398470 0.7196426175796645 0.7570684832227974 0.1954913429288919 0.9695299312104940 0.7565906956083492 0.3063889041479970 0.4699205468415775 0.7573123620340013 0.3062555424889455 0.5448664130514673 0.8420883142023283 0.1484801131635617 0.5441832553996090 0.6733825421720480 0.1484054172416231 0.9284624230683098 0.2569097929138048 0.6967943356100696 0.8495738876941688 0.3455073793340165 0.8462122098719513 0.8502538758541401 0.1764009177590800 0.8526054933427857 0.7673724701708419 0.3444643100835943 0.6650668734289391 0.7946802295465992 0.6710636266908669 0.3503528460302834 0.7943277350245205 0.8403359547450926 0.3554157400750414 0.8790481047544954 0.6739504481674330 0.1675481942980124 0.8788884282031137 0.8499114382777578 0.1763741460801442 0.1784189083790885 0.2569069321854315 0.8058202459399407 0.0173370336890260 0.3445795517660352 0.8366982611354392 0.1001638597840044 0.1755769613104704 0.6510327384438314 0.0165308093862935 0.1678099880973620 0.8337453443445008 0 0998168003694692 0 3444603745408205 0 6553484509584688 0.3497280133695784 0.3442579775086186 0.8478516346973373 0.3501272514673621 0.1755006054267463 0.8515196356598735 0.2953122883110693 0.6728069726503652 0.3537591993591198 0.2943261749707024 0.8417017893434705 0.3539906939828449 0.3780072144245789 0.6709181892501155 0.1716548825730568

> 0.8478833091175675 0.4564666974044383 0.2855680233455508 0.6799917264570549 0.4339598864911834 0.2478881917992192 0.5131905716754409 0.0878897368138294 0.5131702243465501 0.7634321993201337 0.0890676484253616 -0.0089377314608880 0.5209612323400522 0.5502392570588470 0.4043264919202593 0.7702622976148693 0.5546651486425941 0.0930127380143551 0.0125653022709849 0.0873677021266701 0.5141831813428264 0.2624717209550566 0.0870610995654874 -0.0118785499414536 0.0228020769583492 0.5490491578983991 0.4024085483792784 0.2759065568214510 0.5419227231508302 0.1102317661008334 0.7638258514709036 0.4460000197872192 0.2663288795160358 0.1909177821032419 0.4428145386003487 0.5664728029283987 0.1069818865992498 0.4641725366908752 0.5149002129711304 0.1073144613403958 0.5312011556611197 0.4504818954150921 0.1981255837603719 0.5763194537045706 0.4398375404154385 0.2816950825548544 0.5537803251622790 0.4945908115687632 0.2799821011505100 0.4879532280112691 0.5568589176656178 0.2083450698560998 0.6448221902936713 0.3721451628708314 0.2089928145938713 0.8730113776778590 0.3673950719084106 0.2024722245811325 0.9428962401766333 0.4355758665068961 0.1129448492927080 0.9833110802052788 0.4451401834307558 0.1855832140919174 0.3723987414444778 0.6341268128619137 0.1846449703013244 0.1434921559087331 0.6320191598884126 0.1867788221280970 0.0747382001657242 0.5637969049406227 0.2764630193035891 0.0318985285182051 0.5531083917617382 0.4592395136858374 0.8727501084919392 0.1346384179048582 0.4526001170506652 0.9428134031068559 0.0667109104415654 0.3629621687073618 0.9830394307835995 0.0570459619793222

> 0.4353662853828282 0.3728320611295113 0.8682714036804210 0.4403222927862236 0.4434369480695358 0.9356729395292122 0.3579365478130993 0.4617564294595490 -0.0087936738922046 0.6845709490529651 0.1431728761360472 0.6324909288933904 0.6867675747867034 0.0743256458678910 0.5643203956150825 0.7762075756023391 0.0309989733653914 0.5543582684476168 0.4347253694501491 0.1437939127275210 0.8708808752981495 0.4369173781766058 0.0749759951394772 0.9389890842411135 0.3519114341091868 0.0498514854482489 -0.0065724739752879 0.6854386516737191 0.3722661081993107 0.6333588691830058 0.6906150937088009 0.4427020457332015 0.5656447317353479 0.6059146539193554 0.4650794382488534 0.5158674350231907 0.6061360098391538 0.5317230877520096 0.4509636222248602 0.6977342758535985 0.5751742330386430 0.4374640969974469 0.7821249825382486 0.5517360224554917 0.4905781138756780 0.7803257711045875 0.4865046784202253 0.5536796365584495 0.7077156971805617 0.6434965398898523 0.3693326071696781 0.7091617661633770 0.8721028774521600 0.3683410556541173 0.7025795691826834 0.9421687268984846 0.4363655406900189 0.6133042859479769 0.9831302155099969 0.4451189390335878 0.4574324858035429 0.6443048167380291 0.1317448898590972 0.4472584943392278 0.5758933413260785 0.0637091174672681 0.3583171130349596 0.5280379001646478 0.0565076656878507 0.9354650340826933 0.3726786991597938 0.8681875937091057 0.9410153511724137 0.4429661708382245 0.9360410571649981 0.8554315738694044 0.4681231043804079 0.9826107032020234 0.9345904725181780 0.1438288950242372 0.8711029933380523 0.9367848717041223 0.0750213402310197 0.9393216074429210

> 0.8523251093350321 0.0508409501226175 -0.0049141196064500 0.9588438014700382 0.6442668464244643 0.1316407926222023 0.9487667766361593 0.5755684977728278 0.0639162826307898 0.8562855966592281 0.5345810269693824 0.0475298599200057 0.9589557972312697 0.8726702257453243 0.1350737225825131 0.9525565813359438 0.9428042963784655 0.0671404152724975 0.8634142706784145 0.9840250822202492 0.0587009001541834 0.6022159841433316 0.0499310001619125 0.5087915498001608 0.5361939709186515 0.9673058055706917 0.0125231259507975 0.7857255290905735 0.9659581186820768 0.4916095681869834 0.5288099586910125 0.5569461233753904 1.0044446461410368 0.1018904104243510 0.0499552800966034 0.5090017311800465 0.5273117725991293 0.4915857398677737 0.9414366179722491 0 2859253334602871 0 9669887038892919 0 4901972630107546 0.5267371542161586 0.0323638770211828 0.9498433262413214 0.0260733945385169 0.0314354986816019 0.9489243163738160 0.0320008770022586 0.4839203489480714 0.9514721339320799 0.0340951971119879 0.5494022082589427 0.0143115798249559 0.0355807467923404 0.9663435776693283 0.0115982428010566 0.8384149386765735 0.0500931068099399 0.5991837630487573 0.6052796219271033 0.9338150245452577 0.0193084987329242 0.7858685340592277 0.4358753935660276 0.9685863922733333 0.8497707943330444 0.5875020065050026 0.4806110684657913 0.8545094404662404 0.9319482653093107 0.4855886751088659 0.5933706231517857 0.5972053296885860 1.0086671614986320 0.5373821908624860 0.4306498467644143 0.5272036532636289 0.8002883068623585 0.9641600562883134 0.1020059051994103 0.5902109788066389 0.4774944038060678 0.8954466882627666

> 0.5501023394153602 0.9631152380066107 0.4020131722830801 0.5892547099978497 0.0520285115669744 0.9057667927520677 0.8454603591526029 0.4689988255870212 0.5947799077631613 0.3388879755741289 0.0512625141677000 0.5974801948124704 0.1042215205217294 0.9320950099652688 1.0173054597025981 0.2912756844242224 0.4240875252412867 -0.0156866230313384 0.3483462586735430 0.5912665243463534 0.4871565293814243 0.3548825573306219 0.9332886232002342 0.4835994621129701 0.1025473935167236 0.5836791560158313 0.0262319516432832 0.0388449211237374 0.4288638240214612 0.5246601724560680 0.2994697546653218 0.9623934055972300 0.0993477089634935 0.0978882158074485 0.4642687492138370 0.9129316746587868 0.0495219195254512 0.9629634793637613 0.4025576255439381 0.0881528301466508 0.0503452180848813 0.9038307655901346 0.3443965633883060 0.4712261080283533 0.5994766072269629 0.0210561232325389 0.5990025124560112 0.3592217291769088 0.9634674867506218 0.5110498765334450 0.4060662567938979 0.5180097100026250 0.6015789293631673 0.3634963685105817 0.4587664329694693 0.5171589420892512 0.4172682829753888 0.2139340212739302 0.5084142413584237 0.0977343197188922 0.2712796131527065 0.5950069847659835 0.1477250618357860 0.7063689028912106 0.5273680867811207 0.0715788212398101 0.7669772100911267 0.6092211645775480 0.1278034920631961 0.7053580987945828 0.0670536949682495 0.0294476623061855 0.7526583772009532 0.1338011622337011 0.9416746188932444 0.2043252158193550 0.0647006469356261 0.0261273217678947 0.2517806043549108 0.1319836271395016 0.9389688889428379 0.9544123114734516 0.0651269095297855 0.4761020140123245

 $0.0018916094338309 \ \ 0.1322024250575904 \ \ 0.5634554308396278$

0.4552175252890418 0.0660936225494657 0.4744887698290151

 $0.5025027957141022 \ \ 0.1328600930258873 \ \ 0.5622723642029460$

References

- (1) Malek, A.; Farooq, S. J Chem Eng Data **1996**, 41, 25.
- (2) Kresse, G.; Hafner, J. *Phys Rev B* **1994**, *49*, 14251.
- (3) Kresse, G.; Hafner, J. *Phys Rev B* **1993**, *47*, 558.
- (4) Kresse, G.; Furthmuller, J. *Phys Rev B* **1996**, *54*, 11169.
- (5) Kresse, G.; Furthmuller, J. Comp Mater Sci 1996, 6, 15.
- (6) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.
- (7) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys Rev Lett* **1997**, *78*, 1396.
- (8) Blochl, P. E. *Phys Rev B* **1994**, *50*, 17953.
- (9) Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet,

G.; Vimont, A.; Greneche, J. M.; Le Ouay, B.; Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J. C.; Daturi, M.; Ferey, G. *J Am Chem Soc* **2010**, *132*, 1127.

(10) Schaftenaar, G.; Noordik, J. H. J Comput Aid Mol Des 2000, 14, 123.