
Supporting Material: On the Discrepancy between Theory and Ex-
periment for the F-F Spin-spin Coupling Constant of Difluoroethyne†

Rasmus Fabera and Stephan P. A. Sauer∗a

1 Derivation of the vibrational corrections

When describing the vibrational motion of a molecule and the
influence of this motion on molecular properties, a simple ap-
proach is to use Taylor expansions. The molecular property
of interest is expressed as an expansion in some set of gener-
alised nuclear coordinates, all that is needed, in order to deter-
mine the vibrational correction, is a vibrational wavefunction
of the molecule expressed in the same set of coordinates. Thus
we’ll briefly consider how to define an appropriate set of coor-
dinates in which to express our vibrational wavefunction and
consequently the expansion of the property surface.

In order to obtain a vibrational wavefunction, a potential
energy surface for the nuclear motion is required, which is
often expressed in terms of a Taylor expansion. For a set of
displacement coordinates ξξξ , implying ξξξ =000 at the equilibrium
geometry, the potential energy surface can then be expanded
around the equilibrium geometry ∗, as
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It is advantageous to introduce massweighted coordinates,

ηηη = m
1
2 ξξξ , where m is a diagonal matrix with the nuclear

masses on the diagonal. Using those, the quadratic term of
the potential can be written in matrix form as
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Since the matrix F is real and symmetric, a unitary matrix
L can be found so that LTFL = D is diagonal. F will have
an eigenvalue that is zero for every translational and rota-
tional degree of freedom ( 5 for a linear molecule, 6 other-
wise). From the eigenvectors one can define normal coordi-
nates, Q = LTηηη , and the quadratic term in the potential then
becomes
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∗ Åstrand et al. 1 have described how to handle a general expansion point.

The diagonal elements of D corresponding to vibrational de-
grees of freedom are related to the square of the corresponding
harmonic frequency. In wavenumber units the harmonic fre-
quency is given by

2πcωi =

√
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i
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Dii (4)

Another type of coordinate that is often encountered is the re-
duced normal coordinate, a unitless quantity we shall denote
q and define from the above as

qi =

√
2πcωi

h̄
Qi (5)

In order to accurately describe vibrational motion, anhar-
monic terms in the expansion 1 have to be taken into account.
In the above defined coordinates, one can define the cubic
force constant as
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or alternatively in terms of Q coordinates:
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The cubic force constants, ki j j, can be calculated, as described
in ref2, from analytic harmonic force constants by noting that
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and then differentiating the force constant matrix numeri-
cally.†

The vibrational motion of the molecule is then described
on the basis of an harmonic oscillator in each normal coordi-
nate, while the the higher order terms in the expansion of the

† Since transforming with L will in general not diagonalize a force constant
matrix F calculated at a displaced geometry, the above procedure can also
yield cubic force constants with three different indexes, which, however, are
not needed for the present purpose.
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potential are added as perturbations:
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The a zero-order wavefunction is then a product of harmonic
oscillator functions χ i
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For the purpose of the derivations of vibrational corrections to
properties one needs only to consider first order corrections to
the wavefunction of the type
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The remaining terms of the first-order correction can be found
in references3 and1. Using the orthogonality of the harmonic
oscillator functions and normal modes the coefficients c+,c−
can be found to be
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The vibrationally corrected value of the property is

Pv1v2v3··· = 〈Xv1v2v3···|P(ξξξ )|Xv1v2v3···〉 (15)

The property surface is expressed as a Taylor expansion in
normal coordinates Q
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As the vibrational corrections to properties are then ex-
pressed using both an expansion of the vibrational wavefunc-
tion in orders of perturbation theory and a Taylor expansion
of the property surface, and thus one needs to truncate both
in an even fashion. In order to do so, each contribution to the
vibrational correction is considered to have an order equal to
the sum of the order of the term in the Taylor expansion and
the order in the vibrational wavefunction to which the matrix
element is evaluated, i.e. for a contribution of the n’th order
term in the Taylor expansion to the m’th order vibrational cor-
rection, one needs to evaluate the expectation value of Qn to

m−n’th order. Using this definition we see that the first order
vibrational correction vanishes, since 〈Qi〉(0) = 0 and thus to
first non-vanishing order one obtains
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which is the equation employed in this paper. If we evaluate
the integrals, we see that
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Inserting this yields
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which is in principle valid for a molecule in a arbitrary vibra-
tional state, though the description of vibrational corrections
using perturbed harmonic oscillators is in general only valid
for low lying vibrational states. It should be reasonably good
for the ground state, giving the well known expression for the
zero-point vibrational correction
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We can also try to take temperature in account in a simple
way by using the temperature averaged excitation level of a
harmonic oscillator4

〈
vi +

1
2

〉T
=

∑v(v+
1
2 )e

− hcωiv
kT

∑v e−
hcωiv

kT

= 1
2 coth

(
hcωi

2kT

)
(23)

Inserting this gives
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2 Data

Table S1: Equilibrium distances calculated at CCSD(T).

Basis Set RCC/Å RCF/Å
cc-pVDZ 1.20886 1.29963
cc-pVTZ 1.18895 1.28507
cc-pVQZ 1.18656 1.28305
cc-pV5Z 1.18506 1.28198
cc-pVDZ (fc) 1.20967 1.30036
cc-pVTZ (fc) 1.19274 1.28861
cc-pVQZ(fc) 1.18913 1.28585
cc-pV5Z (fc) 1.18851 1.28511
aug-cc-pVTZ 1.18884 1.28435
aug-cc-pVQZ 1.18685 1.28255
aug-cc-pV5Z 1.18506 1.28118
cc-pCVDZ 1.20683 1.29918
cc-pCVTZ 1.18954 1.28661
cc-pCVQZ 1.18658 1.28362
cc-pCV5Z 1.18591 1.28291
aug-cc-pCVTZ 1.19014 1.28771
aug-cc-pCVQZ 1.18698 1.28400
aug-cc-pCV5Z 1.18609 1.28310

Which step length is appropriate for the numerically dif-
ferentiation of the harmonic force constants has been investi-
gated by calculating the cubic force constants of the 12C12C
isotopomer using step lengths of 0.01, 0.05 and 0.10 times the
reduced normal coordinate. These results are summarized in
Table S3. The cubic force constants calculated using different
step lengths do not differ substantially, so it can be expected
that results obtained with step lengths in this range are reli-
able and a value of 0.05 q has been used in the following for
the quadratic and cubic force field of the 13C12C isotopomer.

Table S2: The harmonic frequencies in cm−1 obtained for
F12C12CF at CCSD(T)/cc-pCVQZ level of theory.

Normal mode Frequency

Πu 274.95

Πg 279.00

Σg (1) 790.77

Σu 1373.90

Σg (2) 2528.18

Table S3: The reduced normal coordinate cubic force con-
stants ki jk of F12C12CF in cm−1 calculated at CCSD(T)/cc-
pCVQZ using different step lengths.

normal modes step lengths dq
i j k 0.01 0.05 0.1
Πu Πu Σg(1) 120.63 120.63 120.64
Πu Πu Σg(1) 120.63 120.63 120.64
Πg Πg Σg(1) 201.09 201.09 201.10
Πg Πg Σg(1) 201.09 201.09 201.10
Σg(1) Σg(1) Σg(1) -119.94 -119.94 -119.95
Πu Πg Σu -135.26 -135.26 -135.28
Πu Πg Σu -135.26 -135.26 -135.28
Σg(1) Σu Σu -235.53 -235.54 -235.56
Πu Πu Σg(2) -152.03 -152.03 -152.04
Πu Πu Σg(2) -152.03 -152.03 -152.04
Πg Πg Σg(2) 171.72 171.74 171.82
Πg Πg Σg(2) 171.72 171.74 171.82
Σg(1) Σg(1) Σg(2) 47.57 47.57 47.57
Σu Σu Σg(2) 228.19 228.19 228.20
Σg(1) Σg(2) Σg(2) -262.37 -262.37 -262.38
Σg(2) Σg(2) Σg(2) -413.53 -413.54 -413.57
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Table S4:Nuclear spin-spin coupling constants calculated at
the SOPPA level. The geometry used is that obtained at the
CCSD(T)/cc-pCVQZ level. Results are in Hz.

Basis set JFC JSD JDSO JPSO J
ccJ-pVDZ 11.491 38.331 -1.826 -45.942 2.054
ccJ-pVTZ 8.072 34.747 -1.862 -47.235 -6.278
ccJ-pVQZ 6.921 33.488 -1.871 -46.970 -8.432
ccJ-pV5Z 5.930 32.054 -1.866 -48.217 -12.098
aug-ccJ-pVDZ 6.771 31.710 -1.825 -46.260 -9.604
aug-ccJ-pVTZ 6.239 31.997 -1.862 -48.309 -11.936
aug-ccJ-pVQZ 5.951 31.772 -1.871 -48.643 -12.791
aug-ccJ-pV5Z 5.755 31.592 -1.866 -48.759 -13.277

Table S5: Nuclear spin-spin coupling constants calculated at
the SOPPA(CCSD) level. The geometry used is that obtained
at the CCSD(T)/cc-pCVQZ level. Results are in Hz.

Basis set JFC JSD JDSO JPSO J
ccJ-pVDZ 11.153 36.697 -1.812 -47.667 -1.628
ccJ-pVTZ 8.264 33.753 -1.846 -48.790 -8.620
ccJ-pVQZ 7.411 32.838 -1.855 -48.729 -10.335
ccJ-pV5Z 6.595 31.630 -1.850 -50.172 -13.797
aug-ccJ-pVDZ 6.715 30.625 -1.813 -47.498 -11.970
aug-ccJ-pVTZ 6.559 31.217 -1.847 -49.722 -13.793
aug-ccJ-pVQZ 6.515 31.242 -1.855 -50.382 -14.480
aug-ccJ-pV5Z 6.455 31.220 -1.850 -50.769 -14.944

Table S6: The PSO term calculated er various correlation lev-
els and with a number of basis sets. The results show, that each
methods does converge in the basis set, and thus the difference

HF SOPPA SOPPA(CCSD) CCSD CCSD(T) CC3
ccJ-pVDZ -17.756 -45.942 -47.667 -30.344 -36.062 -35.018
ccJ-pVTZ -18.136 -47.235 -48.790 -31.298 -37.354 -36.690
ccJ-pVQZ -18.664 -46.970 -48.729 -30.956 -36.912 -36.377
ccJ-pV5Z -20.134 -48.217 -50.172 -32.291 -38.276
aug-ccJ-pVDZ -19.852 -46.260 -47.498 -31.603 -36.942 -36.256
aug-ccJ-pVTZ -20.344 -48.309 -49.722 -32.803 -38.776 -38.215
aug-ccJ-pVQZ -20.836 -48.643 -50.382 -32.829 -38.803 -38.330
aug-ccJ-pV5Z -48.759 -50.769 -32.907
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Table S7: The ZPVC to the SSCC from each normal mode
using numerical derivatives at CCSD/ccJ-pVQZ. Results are
in Hz. The contributions from the Π modes are per individual
mode, not for the set of degenerate modes.

Mode JFC JSD JDSO JPSO J
Π(1) 0.252 0.598 0.008 -0.918 -0.060
Π(2) 0.448 0.780 0.008 -1.234 0.002
Σ(1) 0.039 -0.001 -0.004 -0.144 0.002
Σ(2) -0.029 -0.078 -0.002 -0.206 -0.315
Σ(3) 0.177 0.636 -0.001 0.990 -0.110
Total 1.588 3.314 0.025 -3.664 1.263

Table S8: The ZPVC to the SSCC from each normal mode
using numerical derivatives at CCSD/aug-ccJ-pVQZ. Results
are in Hz. The contributions from the Π modes are per indi-
vidual mode, not for the set of degenerate modes.

Mode JFC JSD JDSO JPSO J
Π(1) 0.286 0.636 0.008 -0.830 0.100
Π(2) 0.497 0.832 0.006 -1.098 0.237
Σ(1) 0.037 0.005 -0.005 -0.119 -0.082
Σ(2) -0.026 -0.064 -0.002 -0.177 -0.269
Σ(3) 0.171 0.624 -0.001 0.982 1.776
Total 1.749 3.501 0.020 -3.170 2.099
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