Do primary nitrosamines form and exist in the gas phase? A computational study of CH₃NHNO and (CH₃)₂NNO.

Electronic Supplementary Information

Yizhen Tang,^{*1,2} Michael Hanrath,³ Claus Jørgen Nielsen^{2*}

¹School of Environmental and municipal engineering, Qingdao Technological University, Fushun Road 11. Qingdao, Shandong, 266033 P.R. China.

²Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway.

³Institute for Theoretical Chemistry, Cologne University, Greinstrasse 4, 50939 Cologne, Germany. **Figure S1**. The optimized geometries at the B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, MP2/6-311++G(d,p), and MP2/aug-cc-pVDZ levels for the $(CH_3)_2N$ +NO reaction. Bond distances are in angstrom and bond angles are in degrees. For SP3, the values are from the B3LYP/6-311++G(d,p) and B3LYP/aug-cc-pVDZ levels.

Figure S2. The optimized geometries at the B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, MP2/6-311++G(d,p), and MP2/aug-cc-pVDZ levels for the CH₃NH+NO reaction. Bond distances are in angstrom and bond angles are in degrees. For SP8 the values are from the B3LYP/6-311++G(d,p) and B3LYP/aug-cc-pVDZ levels.

able S1.	The relative (energies (ΔE _{elec} , i	ncluding Z	PE) an	d enthalpies	(ΔH_{298})	at 298	K (kJ 1	nol ⁻¹)	for the	(CH ₃) ₂]	N + N) reactio	n system a	al
Tous lev	rels.															

G4	$\Delta E_{elec} \Delta H_{298}$	0 0	-61.4 -61.4	116.1 116.1	47.7 47.7	-185.3 -185.8	-187.1 -187.1	109.2 106.7	52.7 50.2	141.3 138.9	155.0 152.5
c-pVDZ	$\Delta \mathrm{H}_{298}$	0	-87.5	115.6	24.7		-225.5	102.7	-7.9	123.5	201.1
MP2/aug-c	ΔE_{elec}	0	-86.2	116.9	26.0		-220.0	108.2	-1.2	128.5	204.1
1++G(d,p)	$\Delta \mathrm{H}_{298}$	0	-83.1	120.4	30.4		-215.1	115.3	13.4	162.0	211.4
MP2/6-31	ΔE_{elec}	0	-81.7	121.7	31.6		-210.0	120.9	19.2	165.0	214.4
g-cc-pVDZ	$\Delta \mathrm{H}_{298}$	0	-42.8	124.0	39.3	-177.3	-177.8	115.8	56.6	131.1	103.8
B3LYP/aug	ΔE_{elec}	0	-41.4	125.4	40.7	-172.3	-172.4	120.7	62.6	135.4	106.8
1++G(d,p)	$\Delta \mathrm{H}_{298}$	0	-42.9	125.2	41.4	-174.2	-174.1	117.8	62.4	135.8	108.2
B3LYP/6-31	ΔE_{elec}	0	-41.6	126.5	42.7	-169.2	-169.0	123.0	68.3	140.0	111.1
	Species	(CH ₃) ₂ N+NO	HNO+CH ₃ NCH ₂	¹ HON+CH ₃ NCH ₂	³ HON+CH ₃ NCH ₂	(CH ₃) ₂ NNO	(CH ₃) ₂ NNO ⁷	SP1	SP2	SP3	SP4

$CH_3NH + NO$ reaction system at	
for the	
lol ⁻¹) f	
(kJ n	
at 298 K	
(ΔH_{298})	
and enthalpies (
ZPE)	
including	
$(\Delta E_{elec},$	
energies (
e relative	
. The	evels.
S2	ıs le
blê	ior

Table S2. The rel various levels.	lative energie:	s (ΔE _{elec} , includ	ling ZPE) and	enthalpies (Al	H ₂₉₈) at 298 k	K (kJ mol ⁻¹) f	or the CH ₃ N	H + NO read	ction syster	n at the
Chaning	B3LYP/6-3	311++G(d,p)	B3LYP/aug	g-cc-pVDZ	MP2/6-31	1++G(d,p)	MP2/aug-	-cc-pVDZ	0	4
sologic	ΔE_{elec}	ΔH_{298}	ΔE_{elec}	$\Delta \mathrm{H}_{298}$	ΔE_{elec}	$\Delta \mathrm{H}_{298}$	ΔE_{elec}	$\Delta \mathrm{H}_{298}$	ΔE_{elec}	$\Delta \mathrm{H}_{298}$
CH ₃ NH+NO	0	0	0	0	0	0	0	0	0	0
CH ₂ NH +HNO	-52.7	-52.9	-52.9	-53.1	-89.8	-89.8	-95.0	-95.1	-73.3	-73.3
CH ₂ NH+ ¹ HON	115.3	115.2	113.8	113.7	113.7	223.7	108.1	108.0	104.3	104.3
CH ₂ NH+ ³ HON	31.5	31.4	29.1	29.0	23.6	23.6	17.2	17.2	35.9	35.9
syn-CH ₃ NHNO	-181.9	-187.0	-185.6	-190.8	-213.0	-217.5	-221.5	-226.8	-195.6	-198.1
anti-CH ₃ NHNO	-179.1	-184.2	-182.6	-187.7	-207.4	-212.0	-214.1	-219.0	-190.1	-192.6
CH ₃ NNOH	-176.3	-181.9	-182.5	-188.2	-214.5	-220.0	-223.2	-228.8	-200.1	-202.6
CH ₂ NHNOH	-60.5	-66.5	-66.6	-72.7	-96.5	-103.8	-107.5	-113.1	-79.0	-81.5
SP0	-84.8	-91.6	-89.2	-96.0	-125.6	-132.5	-133.9	-140.7	-114.0	-116.5
SP5	-5.4	-25.6	-16.4	-24.6	-52.3	-60.5	-69.8	-77.9	-25.0	-27.4
SP6	-49.8	-55.5	-58.9	-64.7	-88.7	-94.2	-103.3	-108.9	-69.0	-71.5
SP7	58.6	53.0	52.6	47.0	19.6	14.4	0.6	-4.8	47.8	45.3
SP8	113.8	129.5	128.6	124.3	141.6	136.9	126.2	121.5	134.1	131.6
SP9	111.6	108.9	107.0	104.2	216.2	213.4	206.0	203.1	155.8	153.3

Ś

Table 53. The relat various levels. Snecies	Ive energie: B3LYP/6	$3 (\Delta E_{elec}, includi)$ -311++G(d,p)	ng ZPE) and B3LYP/a	enthalpies (Δ ug-cc-pVDZ	H ₂₉₈) at 29. MP2/6-2	8 K (kJ mol ') 311++G(d,p)	tor the CH ₃ MP2/aug	rec-pVDZ	¹ 2 reaction G.	system at the 4
	ΔE_{elec}	ΔH_{298}	$\Delta \mathrm{E}_\mathrm{elec}$	ΔH_{298}	ΔE_{elec}	ΔH_{298}	ΔE_{elec}	ΔH_{298}	ΔE_{elec}	$\Delta \mathrm{H}_{298}$
CH ₃ NH+NO+O ₂	0	0	0	0	0	0	0	0	0	0
CH ₂ NHNO+HO ₂	-19.3	-24.5	-25.5	-30.8	45.9	41.4	33.9	28.7	-18.4	-23.4
CH ₂ NH+NO+HO ₂	-60.0	-60.1	-58.9	-59.0	-44.8	-44.9	-46.7	-46.8	-77.7	-80.2
syn-CH ₃ NHNO+O ₂	-181.9	-187.0	-185.6	-190.8	-213.0	-217.5	-221.5	-226.8	-195.6	-198.1
CH ₂ NHNOH+O ₂	-65.0	-66.5	-66.6	-72.7	-96.5	-103.8	-107.5	-113.1	-79.0	-81.5
SP5+O ₂	-5.4	-25.6	-16.4	-24.6	-52.3	-60.5	-69.8	-77-	-25.0	-27.4
SP10	88.4	80.6	82.4	74.6	90.8	82.9	77.3	68.1	31.0	26.0
SP11+HO ₂	-8.5	-13.3	-11.2	-16.0	83.0	77.5	66.4	9.09	-0.2	-5.2
Table S4. The veri aug-cc-pVTZ geom	tical excitat. etrv.	ion energy $T_{\rm V}$ (e	V) and osci	llator strength	$f(atomic \iota)$	mits) of the (C	CH3)2NNO a	t the various	DFT metl	nods with the
Stata Evn ^a	B3	LYP	BP8	9	X3I	YP	PW1F	16Mc	PE	BEIPBE
Diate LAP.	$T_{\rm V}$	f	$T_{\rm V}$	f	$T_{\rm V}$	f	$T_{\rm V}$	f	$T_{\rm V}$	f
1A" 3.41	3.46	0.0010	3.43	0.0011	3.46	0.0010	3.52	0.0011	3.52	0.0011
2A' 5.46	5.91	0.1413	5.52	0.1273	5.94	0.1173	6.08	0.1900	6.08	0.1913
^a G. Geiger, H. Stafi	ast, U. Bruel	hlmann and J. R	. Huber, <i>Ch</i>	mical Physics	Letters, 15	<u>181, 79, 521-5</u>	24.			

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

9

Table State	<u>55. The vert</u> Exp. ^a	ical excitation energy 6-311++G(d,p)	y (in eV) of (CH cc-pVDZ	[3)2NNO at the cc-pVTZ	B3LYP/basis s cc-pVQZ	et//B3LYP/6-311+- aug-cc-pVDZ	-G(d,p) geometry. aug-cc-pVTZ	aug-cc-pVQZ
1A"	3.41	3.44	3.46	3.46	3.45	3.45	3.45	3.44
2A'	5.46	5.91	6.14	5.99	5.98	5.88	5.87	5.87
^a G. Gei	iger, H. Staf	ast, U. Bruehlmann a	nd J. R. Huber,	Chemical Phys	sics Letters, 198	31, 79 , 521-524.		
Table (6. The vert	ical excitation energy	y (eV) of the (C)	H ₃) ₂ NNO at the	e various basis	sets with the B3LY	P/basis set//B3LYP/b	tsis set.
State	Exp. ^a	6-311++G(d,1	b) cc-b	VDZ CO	c-pVTZ	cc-pVQZ	aug-cc-pVDZ	aug-cc-pVTZ
1A"	3.41	3.44	3.	45	3.47	3.47	3.43	3.46
2A'	5.46	5.91	6.	05	6.01	6.02	5.85	5.91
^a G. Gei	iger, H. Staf	ast, U. Bruehlmann a	nd J. R. Huber,	Chemical Phys	sics Letters, 198	31, 79 , 521-524.		
Table (37. The verti	cal excitation energy	(in eV) of the (CH ₃) ₂ NNO at t	the CASPT2 at	nd MR-CI methods	with different basis se	ţ.
State	Exp. ^a	CACPTO	Z	d-oo	VTZ	aug-cc-	pVDZ MBCI	aug-cc-pVTZ
1A"	3.41	4.03	4.09	3.45	3.47	3.54	3.36	3.43
2A'	5.46	6.25	6.27	5.55	6.02	5.45	5.84	5.46
^a G. Gei	iger, H. Staf	ast, U. Bruehlmann a	nd J. R. Huber,	Chemical Phys	sics Letters, 198	31, 79 , 521-524.		

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

 \sim

rtical excitation energy T_V (eV) and oscillator strength f (atomic units) of the first excited state (1A") of the CH ₃ NHNO,	VHNOH and CH ₃ NHNO ₂ at various DFT methods with the aug-cc-pVTZ geometry.
8. The vertical excitation	OH CH ₂ NHNOH and (
able S	H ₃ NN

Table S8. The ver CH ₃ NNOH CH ₂ NI	tical exci HNOH a	tation ener nd CH ₃ NE	rgy T_V (eV) HNO ₂ at vari	and oscillate	or strength ethods witl	f(atomic un) h the aug-cc-1	its) of the pVTZ ge	e first excit ometry.	ed state (1A") of the CI	H ₃ NHNO,	
		B3	typ		3P86		X3LYP	2	PW1F	16Me	PBE1	PBE
Species	State	$T_{\rm V}$	f	T_V	f	$T_{\rm V}$	£		$T_{\rm V}$	f	$T_{ m V}$	f
	1A"	3.43	0.0012	3.38	0.0011	3.44	0.00	12	3.49	0.0013	3.49	0.0012
CHIMINO	2A'	5.23	0.0056	4.61	0.0068	5.25	0.00	58	5.46	0.0056	5.49	0.0058
	1A"	4.70	0.0000	4.63	0.0000	4.71	0.00	00	4.77	0.0000	4.78	0.0000
	2A'	6.47	0.0673	5.97	0.0604	6.51	0.06	50	69.9	0.0805	69.9	0.0902
	1A"	3.81	0.0047	3.77	0.0048	3.77	0.00	48	3.92	0.0053	3.97	0.0053
CH2NHNUH	2A"	4.35	0.0018	4.25	0.0009	4.32	0.00	19	4.47	0.0018	4.53	0.0022
Table S9 . The P(CH ₂ NHNOH in va	CM-TDE rious sol)FT vertic: vents at th	al excitation le B3LYP/au	n energy (eV ug-cc-pVTZ	⁷) and osci level.	llator strengt	h (atomic	c units) of	(CH ₃) ₂ N	NO, CH ₃ NHN	O, CH ₃ NP	VOH, and
	n-he	xane	eth	lanol	met	hanol	nitror	nethane		water	gas	phase
Species	$T_{\rm V}$	f	$T_{\rm V}$	f	$T_{\rm V}$	f	$T_{ m V}$	f	$T_{\rm V}$	f	$T_{\rm V}$	f
	3.50	0.0015	3.59	0.0015	3.5	0.0015	3.59	0.0015	3.60	0.0015	3.49	0.0010
	3.53 ^a		3.58 ^a						3.70	Ą	3.41°	
CH ₃ NHNO	3.45	0.0014	3.56	0.0018	3.56	0.0014	3.56	0.0015			3.43	0.0012
CH ₃ NNOH	4.68	0.0000	4.67	0.0000	4.67	0.0000	4.67	0.0000			4.70	0.0000
CH ₂ NHNOH	3.95	0.0067	4.10	0.0117	4.11	0.0118	4.11	0.0120			3.81	0.0047

 ∞