Supplementary material

Electric field gradients in Hg compounds: Molecular orbital (MO) analysis and comparison of 4-component and 2-component (ZORA) methods

Vaida Arcisauskaite^{1*}, Stefan Knecht², Stephan P. A. Sauer¹ and Lars Hemmingsen¹

- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

*Corresponding author. E-mail: vaida@chem.ku.dk

Herein, we compare the performance of Hartree-Fock (HF), BH&H and BP86 functionals at the 4-component level in calculating electron configuration of Hg, charges q of Hg and Cl, polarisation terms (gross populations) (Table 1) and MO contributions to V_{zz} at Hg (Table 2) in HgCl₂. On the one hand, the net charges of Hg and Cl are increasing along the series BP86 -> BH&H -> HF. On the other hand, the population of Hg 6p orbitals is decreasing along the series. This causes increasing negative contributions to V_{zz} from the Hg core (mainly Hg 5p) and Hg6p + Cl MOs and total V_{zz} values due to growing polarisation, including a partial cancellation due to decreasing electron donation from occupied Cl orbitals to the formally empty Hg 6p orbitals.

Table S1: Electron configuration of Hg, charge q of Hg and Cl and polarisation terms (gross populations) in HgCl₂ obtained by projection analysis at the 4-component level using HF, BH&H and BP86 functionals.

i wille thomain.			
	HF	BH&H	BP86
5 <i>d</i>	9.858	9.850	9.839
6 <i>s</i>	0.805	0.941	1.066
6 <i>p</i>	0.142	0.250	0.342
$q~{ m Hg}$	1.194	0.960	0.752
q Cl	-0.530×2	-0.429×2	-0.328×2
polar term	0.134	0.102	0.096

Table S2: MO contributions to V_{zz} at Hg in HgCl₂ obtained at the 4-component level using Hartree-Fock (HF), BH&H and BP86 functionals and the UKB condition.

	HF	BH&H	BP86
\sum Hg core:	-3.14	-0.11	2.11
\sum Cl core:	-0.36	-0.36	-0.36
\sum Hg5d + Cl MOs:	2.44	2.64	2.63
\sum Hg6p + Cl MOs:	-11.85	-11.77	-10.46
Total V_{zz} :	-12.91	-9.60	-6.08

Figure S1: Bond length r(Hg-Cl) dependence of Hg-Cl binding energy calculated with different Hamiltonians at the DFT/BH&H level.

Figure S2: Angle \angle (Cl-Hg-Cl) dependence of Hg-Cl binding energy calculated with different Hamiltonians at the DFT/BH&H level.

	HgCl ₂ linear		HgCl: bent (∠ (Cl-Hg-Cl)=120*)					
MO Nr	i: mi	Contr	MO Nr.	i: mi	Contr	MO Nr	i: m	Contr
E(a.u.)	1, mg	to MO	E(a.u.)	1	to MO	E(a.u.)	j	to MO
45	Hg 5d 3/2; 1/2	0.0221	45	Hg 5d 3/2; 1/2	0.0004	-()	Cl 3s 1/2; 1/2	0.0288
-0.9412	Hg 5d 5/2; 1/2	0.0217	-0.9267	Hg 5d 3/2; -3/2	0.0099	1	Cl 3p 1/2; 1/2	0.0723
	Hg 6s 1/2; 1/2	0.0094		Hg 5d 5/2; 1/2	0.0005	1	Cl 3p 3/2; 1/2	0.0445
	Cl 3s 1/2; 1/2	0.4061		Hg 5d 5/2; 5/2	0.0082	1	Cl 3p 3/2; -3/2	0.1048
46	Hg 6p 1/2; 1/2	0.0008		Hg 5d 5/2; -3/2	0.0018	53	Hg 5d 3/2; 1/2	0.0113
-0.9190	Hg 6p 3/2; 1/2	0.0008		Hg 6s 1/2; 1/2	0.0098	-0.3942	Hg 5d 3/2; -3/2	0.0018
	Cl 3s 1/2; 1/2	0.4746		Hg 6p 1/2; 1/2	0.0002		Hg 5d 5/2; 1/2	0.0074
47	Hg 5d 3/2; 1/2	0.8630		Hg 6p 3/2; 1/2	0.0002		Hg 5d 5/2; 5/2	0.0003
-0.6511	Hg 5d 5/2; 1/2	0.0002	46	CI 35 1/2; 1/2	0.4262		Hg 5d 5/2; -3/2	0.0093
	fig os 1/2; 1/2	0.0342	-0.9185	Hg 5d 3/2; 1/2 Hg 5d 3/2; -3/2	0.0099	-	Hg 6p 1/2; 1/2	0.0006
	Cl 3n 1/2: 1/2	0.0009	0.7105	Hg 5d 5/2: 1/2	0.0035	{	Hg 6p 3/2: 1/2	0.0152
	Cl 3p 3/2: 1/2	0.0252		Hg 5d 5/2: -3/2	0.0082	1	Hg 6p 3/2: -3/2	0.0031
48	Hg 5d 3/2; -3/2	0.9668		Hg 6p 1/2; 1/2	0.0007		Cl 3s 1/2; 1/2	0.0035
-0.6358	Hg 5d 5/2; -3/2	0.0154		Hg 6p 3/2; 1/2	0.0002	1	Cl 3p 1/2; 1/2	0.1230
	Cl 3p 3/2; -3/2	0.0032		Hg 6p 3/2; -3/2	0.0005	1	Cl 3p 3/2; 1/2	0.2745
49	Hg 5d 3/2; 1/2	0.0185		Cl 3s 1/2; 1/2	0.4484	1	Cl 3p 3/2; -3/2	0.0545
-0.5915	Hg 5d 5/2; 1/2	0.7390	47	Hg 5d 3/2; 1/2	0.3876	54	Hg 5d 3/2; 1/2	0.0056
	Hg 6s 1/2; 1/2	0.0003	-0.6476	Hg 5d 3/2; -3/2	0.5045	-0.3857	Hg 5d 3/2; -3/2	0.0010
	Cl 3s 1/2; 1/2	0.0365		Hg 5d 5/2; -3/2	0.0008		Hg 5d 5/2; 1/2	0.0003
	Cl 3p 1/2; 1/2	0.0444		Hg 6s 1/2; 1/2	0.0003		Hg 5d 5/2; 5/2	0.0006
20	LI 3p 3/2; 1/2	0.0171		Cl 3s 1/2; 1/2	0.0270		Hg 5d 5/2;-3/2	0.0195
0.5761	Hg 5d 3/2; -3/2 Hg 5d 5/2; -3/2	0.0241		Cl 3p 1/2; 1/2	0.0005		Hg 65 1/2; 1/2 Hg 65 1/2; 1/2	0.0027
-0.3701	Cl 3n 3/2: -3/2	0.0152		Cl 3n 3/2: -3/2	0.0105	{	Hg 6n 3/2: 1/2	0.0042
51	He 5d 5/2: 5/2	0.9997	49	He 5d 3/2: 1/2	0.0083	{	Hg 6n 3/2: -3/2	0.0002
-0.5580	1.6 54 5/2, 5/2		-0.6383	1.6			1.6 0 0/2, 0/2	
					0.5412			0.0073
52	Hg 5d 3/2; 1/2	0.0455		Hg 5d 3/2; -3/2	0.4170	1	Cl 3p 1/2; 1/2	0.2212
-0.4500	Hg 5d 5/2; 1/2	0.1406		Hg 5d 5/2; 1/2	0.0007]	Cl 3p 3/2; 1/2	0.0415
	Hg 6s 1/2; 1/2	0.3401		Hg 5d 5/2; 5/2	0.0016		Cl 3p 3/2; -3/2	0.1912
	Cl 3s 1/2; 1/2	0.0176		Hg 5d 5/2; -3/2	0.0025	55	Hg 5d 3/2; 1/2	0.0114
	(13p 1/2; 1/2	0.0415		CI 3s 1/2; 1/2	0.0065	-0.3763	Hg 5d 3/2; -3/2	0.0110
69	U 3p 3/2; 1/2 He 6p 1/2: 1/2	0.1166		Cl 3p 1/2; 1/2	0.0002		Hg 5d 5/2; 1/2	0.0328
-0.4211	Hg 6p 3/2; 1/2	0.0024		Cl 3p 3/2: -3/2	0.0002	{	Hg 6s 1/2; 1/2	0.0029
	CL3s 1/2: 1/2	0.0081	49	Hg 5d 3/2: 1/2	0.0066	{	Hg 6n 1/2: 1/2	0.0343
	Cl 3p 1/2; 1/2	0.1511	-0.5863	Hg 5d 3/2: -3/2	0.0014	1	Hg 6p 3/2; 1/2	0.0062
	Cl 3p 3/2; 1/2	0.3296		Hg 5d 5/2; 1/2	0.3204	1	Hg 6p 3/2; -3/2	0.0002
54	Hg 6p 1/2; 1/2	0.0101		Hg 5d 5/2; 5/2	0.1549	1	Cl 3p 1/2; 1/2	0.1168
-0.3990	Hg 6p 3/2; 1/2	0.0029		Hg 5d 5/2; -3/2	0.3298	1	Cl 3p 3/2; 1/2	0.3057
	Cl 3s 1/2; 1/2	0.00004		Cl 3s 1/2; 1/2	0.0278	1	Cl 3p 3/2; -3/2	0.0209
	Cl 3p 1/2; 1/2	0.3255		Cl 3p 1/2; 1/2	0.0299	56	Hg 5d 3/2; -3/2	0.0168
	ci 3p 3/2; 1/2	0.1310		Cl 3p 3/2; 1/2	0.0062	-0.3655	Hg 5d 5/2; 1/2	0.0034
55	Hg 6p 3/2; -3/2	0.0087	20	CI 3p 3/2; -3/2	0.0105	4	Hg 5d 5/2; 5/2	0.0478
-0.3946	He 5d 3/2: 3/2	0.0361	-0.5765	Hg 5d 3/2; 1/2 Hg 5d 3/2: -3/2	0.0107		Hg 50 3/2; -3/2 Hg 6s 1/2: 1/2	0.0032
-0.3716	He 5d 5/2: 1/2	0.0466	10.3703	He 5d 5/2: 1/2	0.0003		Hg 6n 3/2: 1/2	0.0020
	Hg 6s 1/2: 1/2	0.0008		Hg 5d 5/2: 5/2	0.6035		Cl 3p 1/2: 1/2	0.0004
	Cl 3s 1/2: 1/2	0.000008		Hg 5d 5/2: -3/2	0.2302	1	Cl 3p 3/2: 1/2	0.0675
	Cl 3p 1/2;1/2	0.3264		Cl 3s 1/2; 1/2	0.0100		Cl 3p 3/2; -3/2	0.2890
	Cl 3p 3/2; 1/2	0.1662		Cl 3p 1/2; 1/2	0.0141	57	Hg 5d 3/2; 1/2	0.0239
57	Hg 5d 3/2; -3/2	0.00112		Cl 3p 3/2; 1/2	0.0112	-0.3537	Hg 5d 3/2; -3/2	0.0059
-0.3666	Hg 5d 5/2; -3/2	0.0894		Cl 3p 3/2; -3/2	0.0012	1	Hg 5d 5/2; 1/2	0.0396
	Cl 3p 3/2; -3/2	04898	51	Hg 5d 5/2; 1/2	0.5901		Hg 5d 5/2; 5/2	0.0002
			-0.5652	Hg 5d 5/2; 5/2	0.0525		Hg 5d 5/2; -3/2	0.0754
				Hg 5d 5/2; -3/2	0.3139	1	Hg 6p 1/2; 1/2	0.0030
				Hg 6s 1/2; 1/2	0.0002	4	Hg 6p 3/2; 1/2	0.0008
				Cl 3s 1/2; 1/2	0.0025		Hg 6p 3/2; -3/2	0.0013
				Cl 2p 2/2: 1/2	0.0034		Cl 2p 2/2; 1/2	0.1827
				Cl 3p 3/2; 1/2	0.0022		Cl 3p 3/2; 1/2	0.1017
			52	Hg 5d 3/2: -3/2	0.0052		crop 3/2;-3/2	0.2087
			-0.4662	Hg 5d 5/2-5/2	0.0227			
				Hg 5d 5/2: -3/2	0.0139			l
	-			0	0.0133			1
				Hg 6s 1/2: 1/2	0.2390			
				Hg 6s 1/2; 1/2 Hg 6p 1/2; 1/2	0.2390			

Figure S3: AO contributions to MOs obtained for the linear and bent $HgCl_2$ with projection analysis at the 4-component level using the BH&H functional and the RKB condition.

HgCl ₂ linear r(Hg-Cl)=2.252 Å		HgCl ₂ linear r(Hg-Cl)=2.102 Å		HgI2 linear r(Hg-Cl)=2.554 Å		HgCl₂ bent (∠Cl-Hg-Cl=120°; r(Hg-Cl)=2.252 Å)		
Nr. 56; E=-0.3711 a.u. contr: -0.86 a.u.	Nr. 57; E=-0.3711 a.u. contr: -0.86 a.u.	Nr. 56 contr: -1.31 a.u.	Nr. 57 contr: -1.31 a.u.	Nr. 92 contr: -0.42 a.u.	Nr. 93 contr: -0.42 a.u.	Nr. 56; E=-0.3669 a.u. contr: -0.65 a.u.	Nr. 57; E=-0.3554 a.u. contr: -4.31 a.u.	
Nr. 54: E=-0.3977 a.u. contr: 0.65 a.u.	Nr. 55; E=0.3977 a.u. contr: 0.65 a.u.	Nr. 54 contr: 1.03 a.u.	Nr. 55 contr: 1.03 a.u.	Nr. 90 contr: 0.67 a.u.	Nr. 91 contr: 0.67 a.u.	Nr. 54; E=-0.3863 a.u. contr: 1.16 a.u.	Nr. 55; E=-0.3775 a.u. contr: 0.11 a.u.	
Nr. 52; E=-0.4523 a.u. contr: -1.78 a.u.	Nr. 53; E= -0.4213 a.u. contr: -9.44 a.u.	Nr. 52 contr: -2.26 a.u.	Nr. 53 contr: -12.37 a.u.	Nr. 88 contr: -0.51 a.u.	Nr. 89 contr: -8.98 a.u.	Nr. 52; E=-0.4676 a.u. contr: 0.32 a.u.	Nr. 53; E=-0.3938 a.u. contr:-6.12 a.u.	
Nr. 50; E=-0.5890 a.u. contr: 18.24 a.u.	Nr. 51; E=-0.6890 a.u. contr: 18.24 a.u.	Nr. 50 contr: 18.25 a.u.	Nr. 51 contr: 18.25 a.u.	Nr. 86 contr: 18.21 a.u.	Nr. 87 contr: 18.21 a.u.	Nr. 50; E=-0.5957 a.u. contr: 17.18 a.u.	Nr. 51; E=-0.5952 a.u. contr: 17.74 a.u.	
Nr. 48; E=-0.6110 a.u. contr: -8.33 a.u.	Nr. 49; E=-0.6110 a.u. contr: -8.33 a.u.	Nr. 48 contr: -7.89 a.u.	Nr. 49 contr: -7.89 a.u.	Nr. 84 contr: -8.63 a.u.	Nr. 85 contr: -14.18 a.u.	Nr. 48; E=-0.6124 a.u. contr: -14.71 a.u.	Nr. 49; E=-0.6056 a.u. contr:-8.50 a.u.	
Nr. 47; E=-0.6219 a.u. contr: -12.83 a.u.		Nr. 47 contr: -11.13 a.u.		Nr. 83 contr: -8.63 a.u.		Nr. 47; E=-0.6152 a.u. contr: -7.51 a.u.		
Nr. 45; E=-0.9425 a.u. contr: -0.95 a.u.	Nr. 46; E=-0.9201 a.u. contr: -2.33 a.u.	Nr. 45 contr: -1.57 a.u.	Nr. 46 contr: -4.28 a.u.	Nr. 81 contr: -1.55 a.u.	Nr. 82 contr: -1.78 a.u.	Nr. 45; E=-0.9274 a.u. contr: -0.17 a.u.	Nr. 46; E=-0.9191 a.u. contr: -1.95 a.u.	
∑Hg core contr: 0.12 a.u.		∑Hg core contr: 1.42 a.u.		∑Hg core contr: 0.59 a.u.		∑Hg core contr: -0.37 a.u.		
∑Cl core contr: -0.36 a.u.		∑Cl core contr: -0.45 a.u.		∑I core contr: -0.76 a.u.		∑Cl core contr: -0.23 a.u.		
∑Hg5d+Cl MOs contr: 2.54 a.u.		∑Hg5d+Cl MOs contr: 3.14 a.u.		∑Hg5d+I MOs contr: 2.08 a.u.		∑ Hg5d+Cl MOs contr: 4.2 a.u.		
∑Hg6p+Cl MOs contr: -10.47 a.u.		∑Hg6p+Cl MOs contr: -14.59 a.u.		∑Hg6p+I MOs contr: -9.42 a.u.		∑ Hg5d+6p+Cl MOs contr: -11.61 a.u.		
Total Vzz: -8.15 a.u.		Total Vzz: -10.36 a.u.		Total Vzz: -7.53 a.u.		Total V _{zz} : -8.02 a.u.		

Figure S4: Energies and a graphical representation of valence MOs in linear and bent HgCl₂, HgI₂ (isosurface: 0.015) and their contributions to V_{zz} obtained at the SR-ZORA-4 level using the BH&H functional; red colour corresponds to the MOs with an admixture of Hg 6p and their contributions to V_{zz} .