Electronic Supplementary Information

Metastable He–O bond inside a ferroelectric molecular cavity: (HeO)(LiF)₂

Wojciech Grochala

Contents

S1. List of selected physical properties for which He exhibits a record value among all elements. S2. List of selected physical properties for which He exhibits the second largest or the second smallest value among all elements.

S3. Illustration of selected physicochemical properties with the record-high- or record-low values for helium atom.

S4. Influence of the basis set effect on the PES of ¹HeO (E = 0.1 au). Graph shows energy, Ex10⁻² (hartree) vs. the interatomic separation, R (Å) for several different basis sets.

S5. The fits of the PESs for ¹HeO (E = 0.1 au) with the Morse potential.

S6. Impact of the strength of the external electric field, E (atomic units), on the lowest lying singlet (blue, ${}^{1}\Sigma$) and triplet (red, ${}^{3}\Pi$) potential energy surfaces of HeO and HF molecules. Graphs show energy, Ex10⁻² (hartree) vs. the interatomic separation, R (Å) for several different values of electric field.

S7. Molecular orbital coefficients for ¹HeO (E = 0.1 au) and HF (E = 0 au).

S8. Gross orbital populations for ¹HeO (E = 0.1 au) and HF (E = 0 au).

S9. The molecular orbital structure of the HeO (E = 0.1 au) and HF (E = 0 au) molecules in their first excited triplet states (from the Hartree-Fock single-point calculation at geometries preoptimized with CCSD(T)).

S10. Molecular geometry and He–O stretching frequency of (HeO)(LiF)₂ as optimized at B3LYP, MP2 and CCSD(T) levels of theory. Distances in Å.

S11. The electrostatic potential of the (HeO)(LiF)₂ molecule in its lowest bound singlet state.

S12. The lines of electric field around the (HeO)(LiF)₂ molecule in its lowest bound singlet state.

S13. He vs. Be: the Group 2 elements?

S14. He or Ne – which element is more noble?

S15. Position of He in the Periodic Table of Elements.

	Valı		
Property	Не	Element No.2	Unit
Melting point	0.95*	14.01 (H ₂)	Κ
Boiling point	4.22	20.28 (H ₂)	Κ
Heat of fusion	0.0138	0.117 (H ₂)	kJ mol ⁻¹
Heat of vaporization	0.0829	0.904 (H ₂)	kJ/mol
Critical temperature	5.19	33.20 (H ₂)	K
van der Waals	0.03457	0.2135 (Ne)	Å ² atm mol ⁻²
constant (a)			
Atomic radius	31	38 (Ne)	pm
Covalent radius	32	37 (H ₂)	pm
Refractive index	1.000035	1.000067 (Ne)	[1]
1st ionization energy	2372.3	2080.7 (Ne)	kJ/mol
Solubility in water at	claimed to be	?	mg /l
RT	the smallest		
	of all gases		

S1. List of selected physical properties for which He exhibits the record value among all elements.

*at 25 bar

S2. List of selected physical properties for which He exhibits the second largest or the second smallest value among all elements.

	Value	for	
Property	Element No.1	Не	Unit
Liquid range	2.51 (Ne)	3.27	K
Density (gas phase)	0.08988 (H ₂)	0.1786	$ m g~L^{-1}$
Specific heat	14.304 (H ₂)	5.193	$J g^{-1} K^{-1}$
2nd ionization energy	7298.1 (Li)	5250.5	kJ mol ⁻¹

S3. Illustration of selected physicochemical properties with the record-high- or record-low values for helium atom.

Helium and a handful of its important physicochemical properties with the record-high- or record-low values. Elements occupying the second position in each of the rankings, are also showed.

S4. Influence of the basis set on the on the PES of ¹HeO (E = 0.1 au). Graph shows energy, Ex10⁻² (hartree) vs. the interatomic separation, R (Å) for several different basis sets.

S5. The fits of the PESs for ¹HeO (E = 0.1 au) with the Morse potential.

(solid line – the calculated PES, dotted line – the fitted curve)

Parameter/basis	6-311++G**	cc-pV2Z	cc-pV3Z	cc-pV4Z	cc-pV5Z
D _e [10 ⁻² au]	0.000558	0.000457	0.000540	0.000540	0.000575
a [1]	2.9985	2.9985	2.9985	2.9978	2.9945
r _e [Å]	1.0833	1.0833	1.0832	1.0695	1.0688
V(r _e) [10 ⁻² au]	-0.7782	-0.7781	-0.7789	-0.7791	-0.7792

$$V(r) = D_e (1 - e^{-a(r - r_e)})^2 + V(r_e)$$

S6. Impact of the strength of the external electric field, E (atomic units), on the lowest lying singlet (blue, ${}^{1}\Sigma$) and triplet (red, ${}^{3}\Pi$) potential energy surfaces of HeO and HF molecules. Graphs show energy, Ex10⁻² (hartree) vs. the interatomic separation, R (Å) for several different values of electric field.

S7. Molecular orbital coefficients for ¹HeO (E = 0.1 au) and HF (E = 0 au).

¹HeO

Orbita	il sym	netrie	s:												
	Occuj	pied	(SG)	(SG)	(SG)	(PI) (PI)								
	Virtu	Jal	(SG)	(PI)	(PI)	(SG) (SG)	(SG) (SG	;) (PI	:) (PI	I) (S	SG)		
The el	ectro	nic st	ate i	is 1-8	GG.										
Alpha	a occ	. eige	nvalı	les	20	0.67	526 -	1.43	346	-0.94	056	-0.5	57523	-0.	.57523
Alpha	a virt	. eige	nvalı	les	- – (0.09	677	0.20	098	0.20	098	0.2	20506	0.	.29033
Μ	Iolecu	lar Or	bital	L Coef	ficie	ents									
					1		2		3		4		5		
				(SC	3) 0	(:	SG) O	(SG)	0 ((PI)	-0	(PI)-	-0	
Е	IGENV	ALUES		-20.6	57526	-1	.43346	- 0	.9405	6 - 0	.5752	23 -	-0.575	23	
1 1	. He	1S		0.0	0004	0	.15448	0	.1991	4 C	.0000	00	0.000	00	
2		2S		0.0	0025	0	.28709	0	.4047	1 C	.0000	00	0.000	00	
3		3S		-0.0	0001	0	.10100	0	.2295	4 C	.0000	00	0.000	00	
4		4S		-0.0	00010	0	.00740	- 0	.0613	1 0	.0000	0	0.000	00	
5		5PX		0.0	00000	0	.00000	0	.0000	0 0	.0000	00	0.022	35	
6		5PY		0.0	00000	0	.00000	0	.0000	0 0	.0223	35	0.000	00	
7		5PZ		0.0	0020	0	.04397	0	.0332	5 0		0	0.000	000	
8 2	2 0	1S		0.5	55157	- 0	.09980	0	.0734	9 0	.0000	0	0.000	000	
9		2S		0.4	7179	- 0	.16686	0	.1244	6 0	.0000	0	0.000	000	
10		2PX		0.0	00000	0	.00000	0	.0000	0 0		0	0.299	51	
11		2PY		0.0	00000	0	.00000	0	.0000	0 0	.2995	51	0.000	000	
12		2PZ		-0.0	0173	- 0	.03249	- 0	.1175	4 0		0	0.000	000	
13		35		0.0	0493	Ő	.48622	- 0	.3739	7 0	.0000	0	0.000	000	
14		3PX		0.0	00000	0	.00000	0	.0000	0 0	.0000	0	0.459	26	
15		3 PY		0.0	0000	0	.00000	0	.0000	0 0	.4592	26	0.000	0.00	
16		3PZ		0.0	0085	- 0	.05828	- 0	.1816	6 0	.0000	0	0.000	000	
17		4S		-0.0	0041	Ő	.34296	- 0	.3920	6 0		0	0.000	0.0	
18		4 P X		0.0	0000	0	. 0 0 0 0 0	0	.0000	0 0		0	0.416	84	
19		4 P Y		0.0	00000	0	.00000	0	.0000	0 0	.4168	34	0.000	000	
2.0		4 P Z		-0.0	0030	- 0	.00160	- 0	.1240	6 0) ()	0.000	0.0	
21		55		0.0	0036	- 0	.02055	0	.0081	8 0		0	0.000	0.0	
22		5PX		0.0	0000	0	.00000	0	.0000	0 0		0	0.064	49	
23		5 P Y		0.0	0000	0	.00000	0	.0000	0 0	0.0644	19	0.000	0.00	
24		5P7		0.0	00004	0	01272	- 0	0415	3 0		0	0 000	00	
25		6D 0		-0.0	0053	0	.01217	0	.0191	7 0		0	0.000	0.0	
26		6D+1		0 0	0000	0	00000	0	0000	0 0)0 -	-0 006	73	
27		6D-1		0.0	00000	0	00000	0	0000	0 - 0	0067	73	0 000	00	
28		6D+2		0.0		0	00000	0	0000	0 0		0	0 000	00	
29		6D-2		0.0	00000	0	00000	0	0000	0 0		0	0 000	00	
25		02 2		0.0	6	Ū	7	Ũ	8	0	9		10		
				(50	V	(PT) – - V	(рт)	v ((SG)	-V	(SG) -	-V	
E	TGENV	ALUES		-0.0	9677	0	.20098	ò	.2009	8 0	2050)6	0.290		
1 1	He	15		0.0	4625	0	.00000	0	.0000	0 0	. 1250) 8 -	-0.048	87	
2		25		0.0)4743	0	.00000	0	.0000	0 0	.3085	58	0.000	163	
3		35		0.1	2621	0	.00000	0	.0000	0 0).7121	LO -	-0.621	.66	
4		4.S		1.7	2341	0	00000	0	0000	0 - 0	5106	51 -	-1 693	64	
5		5 P X		0 0	0000	0	00185	0	0000	0 0		0	0 000	00	
6		5 DV		0.0		0	00000	0	0018	5 0		0		00	
7		5P7.		-0.0	12315	0	00000	0	0000	0 -0) 0280)8 -	-0 000	11	
, פס	0	15		0.0	2595	0	00000	0	0000	0 0	0280	28	0 023	02	
9	. 0	25		0.0	14222	0	00000	0	0000	0 0	0502	21	0 036	74	
10		2.PX		0.0	00000	-0	.11293	0	.0000	0 0	. 0000) ()	0.000	000	
11		21 A 2 D V		0.0	0000	0	00000	_ 0	1120	3 0		0	0 000	00	
12		211 207		0.0	1074	0	00000	0 =	0000) 2644	57 -	-0 000	02	
1 २		35		-0.0)9364	0	00000	0	0000	0 -0) 1775	,, - 78 -	-0 057	24	
14		3 PX		0.0	00000	_ 0	09049	0	0000	0 0		0	0 000	000	
				0.0		0		0		5 0					

15	3 PY	0.00000	0.00000	-0.09049	0.00000	0.00000
16	3PZ	0.10856	0.00000	0.00000	0.35583	-0.04252
17	4S	-0.45585	0.00000	0.00000	-0.22965	-0.83434
18	4PX	0.00000	-0.56125	0.00000	0.00000	0.00000
19	4PY	0.00000	0.00000	-0.56125	0.00000	0.00000
20	4PZ	-0.37469	0.00000	0.00000	0.92553	0.05125
21	5S	-0.68905	0.00000	0.00000	0.18480	3.06815
22	5PX	0.00000	1.27562	0.00000	0.00000	0.00000
23	5PY	0.00000	0.00000	1.27562	0.00000	0.00000
24	5PZ	1.81233	0.00000	0.00000	-0.64897	-1.60770
25	6D 0	0.00924	0.00000	0.00000	0.00727	-0.01855
26	6D+1	0.00000	0.00251	0.00000	0.00000	0.00000
27	6D-1	0.00000	0.00000	0.00251	0.00000	0.00000
28	6D+2	0.00000	0.00000	0.00000	0.00000	0.00000
29	6D-2	0.0000	0.00000	0.00000	0.00000	0.00000

¹HF

Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) (SG) (PI) (PI) (SG) The electronic state is 1-SG. Alpha occ. -- -26.29921 -1.60649 -0.77293 -0.65184 -0.65184 Alpha virt. -- 0.04303 0.20971 0.29879 0.29879 0.31232 Molecular Orbital Coefficients

			1	2	3	4	5
			(SG)O	(SG)O	(SG)0	(PI)O	(PI)O
	EIGEN	VALUES	 -26.29921	-1.60649	-0.77293	-0.65184	-0.65184
1	1 H	1S	0.00015	0.09302	-0.17265	0.00000	0.00000
2		2S	0.00011	0.06224	-0.24960	0.00000	0.00000
3		3S	-0.00019	0.01778	-0.03671	0.00000	0.00000
4		4S	-0.00009	0.00875	-0.00138	0.00000	0.00000
5		5PX	0.0000	0.00000	0.00000	0.03483	0.00000
6		5PY	0.0000	0.00000	0.00000	0.00000	0.03483
7		5PZ	0.00009	0.03087	-0.04887	0.00000	0.00000
8	2 F	1S	0.54767	-0.12142	-0.02972	0.00000	0.00000
9		2S	0.47350	-0.20376	-0.05062	0.00000	0.00000
10		2PX	0.00000	0.00000	0.00000	0.30763	0.00000
11		2PY	0.00000	0.00000	0.00000	0.00000	0.30763
12		2PZ	-0.00119	-0.02909	0.26034	0.00000	0.00000
13		35	0.00616	0.60160	0.15934	0.00000	0.00000
14		3PX	0.00000	0.00000	0.00000	0.46755	0.00000
15		3PY	0.00000	0.00000	0.00000	0.00000	0.46755
16		3PZ	0.00044	-0.05070	0.39390	0.00000	0.00000
17		4S	-0.00076	0.44246	0.23813	0.00000	0.00000
18		4PX	0.00000	0.00000	0.00000	0.40071	0.00000
19		4PY	0.00000	0.00000	0.00000	0.00000	0.40071
20		4PZ	-0.00012	-0.01830	0.25887	0.00000	0.00000
21		5S	0.00062	-0.03911	0.04272	0.00000	0.00000
22		5PX	0.00000	0.00000	0.00000	0.05811	0.00000
23		5PY	0.00000	0.00000	0.00000	0.00000	0.05811
24		5PZ	-0.00005	0.01129	0.01762	0.00000	0.00000
25		6D 0	-0.00011	0.00784	-0.01817	0.00000	0.00000
26		6D+1	0.00000	0.00000	0.00000	-0.01152	0.00000
27		6D-1	0.00000	0.00000	0.00000	0.00000	-0.01152
28		6D+2	0.00000	0.00000	0.00000	0.00000	0.00000
29		6D-2	0.00000	0.00000	0.00000	0.00000	0.00000
			6	7	8	9	10
			(SG) V	(SG) V	(PI)V	(PI)V	(SG) V
	EIGEN	VALUES	 0.04303	0.20971	0.29879	0.29879	0.31232
1	1 H	1S	0.00000	0.07831	0.00000	0.00000	0.02585

2			2S	0.13786	-0.21882	0.00000	0.00000	0.08800
3			3S	-0.17759	4.46174	0.00000	0.00000	1.11038
4			4S	1.38881	-1.46322	0.00000	0.00000	-0.62091
5			5PX	0.00000	0.00000	0.00000	0.01814	0.00000
6			5PY	0.0000	0.00000	0.01814	0.00000	0.00000
7			5PZ	-0.01584	-0.05769	0.00000	0.00000	-0.01319
8	2	F	1S	0.01381	0.01450	0.00000	0.00000	0.02778
9			2S	0.02442	0.02532	0.00000	0.00000	0.04577
10			2PX	0.0000	0.00000	0.00000	-0.11339	0.00000
11			2PY	0.0000	0.00000	-0.11339	0.00000	0.00000
12			2PZ	0.03788	0.09996	0.00000	0.00000	-0.05052
13			3S	-0.09183	-0.09070	0.00000	0.00000	-0.10343
14			3 PX	0.0000	0.00000	0.00000	-0.09472	0.00000
15			3 PY	0.0000	0.00000	-0.09472	0.00000	0.00000
16			3PZ	0.05451	0.14380	0.00000	0.00000	-0.01136
17			4S	-0.02786	-0.00665	0.00000	0.00000	-0.71103
18			4PX	0.00000	0.00000	0.00000	-0.55521	0.00000
19			4PY	0.00000	0.00000	-0.55521	0.00000	0.00000
20			4PZ	0.10070	0.10868	0.00000	0.00000	-0.38648
21			5S	-0.48614	-2.38385	0.00000	0.00000	0.53823
22			5PX	0.00000	0.00000	0.00000	1.27543	0.00000
23			5PY	0.00000	0.00000	1.27543	0.00000	0.00000
24			5PZ	-0.01100	1.16118	0.00000	0.00000	1.34826
25			6D 0	-0.00186	0.00820	0.00000	0.00000	0.00746
26			6D+1	0.00000	0.00000	0.00000	0.00392	0.00000
27			6D-1	0.00000	0.00000	0.00392	0.00000	0.00000
28			6D+2	0.00000	0.00000	0.00000	0.00000	0.00000
29			6D-2	0.0000	0.00000	0.00000	0.00000	0.00000

S8. Gross orbital populations for ¹HeO (E = 0.1 au) and HF (E = 0 au).

Не	1S	0.35131	н	1S	0.25628
	2S	0.90898		2S	0.31408
	3S	0.31499		3S	0.03303
	4S	-0.00136		4S	0.00586
	5PX	0.01165		5PX	0.02463
	5PY	0.01165		5PY	0.02463
	5PZ	0.02406		5PZ	0.04194
0	1S	1.08397	F	1S	1.0768
	2S	0.91182		2S	0.91983
	2PX	0.39976		2PX	0.41419
	2PY	0.39976		2PY	0.41419
	2PZ	0.07797		2PZ	0.31214
	3S	1.0567		3S	1.08269
	3PX	0.84691		3PX	0.86297
	3PY	0.84691		3PY	0.86297
	3PZ	0.22558		3PZ	0.69447
	4S	0.86572		4S	0.85874
	4PX	0.67928		4PX	0.64283
	4PY	0.67928		4PY	0.64283
	4PZ	0.16895		4PZ	0.43027
	5S	-0.02872		5S	-0.04558
	5PX	0.06225		5PX	0.05493
	5PY	0.06225		5PY	0.05493
	5PZ	0.03147		5PZ	0.01579

S9. The molecular orbital structure of the HeO (E = 0.1 au) and HF (E = 0 au) molecules in their first excited triplet states (from the Hartree-Fock single-point calculation at geometries preoptimized with CCSD(T)).

The α and β orbitals with similar spatial functions are linked with dotted lines to orbital image.

S10. Molecular geometry and He–O stretching frequency of (HeO)(LiF)₂ as optimized at B3LYP, MP2 and CCSD(T) levels of theory. Distances in Å.

S11. The electrostatic potential of the (HeO)(LiF)₂ molecule in its lowest bound singlet state.

Isosurfaces drawn at ± 0.05 au.

S12. The lines of electric field around the (HeO)(LiF)₂ molecule in its lowest bound singlet state.

Projection on the plane of the molecule (lines of electric field – yellow; isolines of electric potential – red, violet; isosurface of null potential – green).

S13. He vs. Be: the Group 2 elements?

In section 3 of the main paper we have discussed possible isoelectronic relation between HeO and HF. We suggested that too many important features of these two, formally 8-electron systems, indicate that they do *not* behave as isoelectronic species. But it is instructive to compare now more complex (HeO)(LiF)₂ species to its HF–homologue, *i.e.* (HF)(LiF)₂, as well as to related (BeO)(LiF)₂. We have optimized geometry for these molecules (Figure 10) as well as calculated their vibrational spectra and selected physicochemical features.

Optimized molecular geometry of the planar (HeO)(LiF)₂, (HF)(LiF)₂ and (BeO)(LiF)₂ molecules ($C_{2\nu}$) in their lowest singlet state (CCSD(T) /6-311++G** results). No imaginary vibrational modes were detected or any of these species. Distances are in Å.

The optimized geometry of $(HF)(LiF)_2$ differs substantially from that of $(HeO)(LiF)_2$; the major difference is that the [HF] unit is dissociated, similarly to the HF molecule in the electric field of 0.10 au (section 2 of the main paper). Thus, formula of $(HF)(LiF)_2$ should rather be written as $(Li_2F^+)(HF_2^-)$. Analogous description of $(Li_2O)(HeF_2)$ as $(HeO)(LiF)_2$ is definitely incorrect, taking into account the values of He–O and He–F bond lengths predicted for this molecule. The dissimilarity between [HeO] and [HF] is apparent again.

On the other hand, $(BeO)(LiF)_2$ is characterized by the presence of the Be–O bond at 1.495 Å, similarly to the He–O bond predicted for $(HeO)(LiF)_2$. The difference of the Be–O and He–O bond lengths is ~0.35 Å, which is much smaller than the difference of atomic radii of Be and He atoms, ~0.74 Å. This can be traced back to a much larger ionic character of chemical bonding in the BeO unit than for HeO. This is additionally seen in very short Be–F distances, large absolute values of Mulliken charge on Be and O atoms, and a small dipol moment of 3.9 D for Be system. Obviously, the 2s² shell of Be may be depopulated more easily than the 1s² shell of He. Still, [HeO] moiety seems to be resemble [BeO] better than [HF]. Thus, could helium, in agreement with its 1s² electronic configuration but in disagreement with a more traditional view, be actually labeled as a Group 2 and not a Group 18 element?

S14. He or Ne – which element is more noble?

Having studied (HeO)(LiF)₂ we have scrutinized its heavier noble gas analogues. However, neither (NeO)(LiF)₂ nor (NeO)(NaF)₂ could be detected as minima on the singlet PES. This stability difference is interesting since electronegativity and many other chemical properties of elements change quite monotonically when one goes down any of the Groups 13–18. For example, O is more electronegative than S, F than Cl, Ne than Ar, etc. Hence, He should be more electronegative and as such less prone to chemical bonding than Ne.

The atypical behaviour of He vs. Ne (*i.e.* reversal of stability for their theorized chemical connections) which obviously contrasts with the trend for the 1st ionization potentials of these elements (He > Ne), has been noticed before.^{1,2,3,4,5,6,7} Various explanations were provided from electrostatic arguments² to increased Pauli repulsion from the filled 2p orbital on Ne¹. We think that a relatively large reactivity of He with respect to Ne may be understood simply in terms of substantial charge density which appears at a small He center when its 1s² shell is even partially depopulated. The increased charge density obviously leads to stronger electrostatic and dispersive interactions with ligands.

S15. Position of He in the Periodic Table of Elements.

The combined picture of chemical bonding and physicochemical properties for small neutral and anionic species containing atoms of the lightest noble gas elements, He and Ne, as well as the proposed isoelectronic He~Be analogy, jointly suggest that He should be best placed in the 2nd Group of the periodic table of chemical elements, just above beryllium.⁴ Neon is second to none as far as chemical inertness is considered, and the last true 'noble gas' in Group 18. Our analysis based on others' and our own theoretical results, strongly supports what Bent and Scerri have been advocating for years.⁸

The suggested position of He in the periodic table of elements, which emerges from theoretical studies of small neutral and anionic species containing atoms of the lightest noble gas elements, He and Ne, and from the He~Be analogy. Modified by permission of the Polish Society of Chemistry after Ref.4.

He neighbouring H within the s block would reflect the electronic configurations and emphasize similarity of these nonmetallic elements (both are gaseous at ambient conditions).⁴ Placement of He above Be is supported by a larger affinity of these elements to O than to F, as well as by the monotonic decrease of the first ionization potential down the Group 2, and down the Group 18, and by the null electron affinity of elements from these groups.⁴ Identical trends of the ionization potential hold in the neigbouring Groups 1 and 17, respectively.

Neon now emerges as the most noble element known.

Literature

- 1 W. Zou, Y. Liu, J. E. Boggs, Chem. Phys. Lett. 2009, 482, 207.
- 2 M. W. Wong, J. Am. Chem. Soc. 2000, 122, 6289.
- 3 J. Lundell, G. M. Chaban, R. B. Gerber, Chem. Phys. Lett. 2000, 331, 308.
- 4 W. Grochala, Pol. J. Chem. 2009, 83, 87.
- 5 T. -H. Li, C. -H. Mou, H. -R. Chen, W. -P. Hu, J. Am. Chem. Soc., 2005, 127, 9241; Y. -L. Liu, Y. -H. Chang, T. -H. Li, H. -R. Chen, W. -P. Hu, Chem. Phys. Lett. 2007, 439, 14.
- 6 S. Borocci, N. Bronzolino, F. Grandinetti, Chem. Phys. Lett. 2008, 458, 48.
- A hypothetical (F⁻...NeBN) anion remains the only metastable anionic species which contains chemically bound Ne atom: P. Antoniotti, S. Borocci, N. Bronzolino, P. Cecchi, F. Grandinetti, *J. Phys. Chem. A* 2007, 111, 10144. Analogous He speices is predicted to be much more strongly bound.
- 8 H. Bent, New Ideas in Chemistry from Fresh Energy for the Periodic Law, AuthorHouse, Bloomington, USA, 2006; E. R. Scerri, The Periodic Table: Its Story and Its Significance, Oxford University Press, Oxford, UK, 2007.