The Dynamics and Spectroscopic Fingerprint of Hydroxyl Radical Generation through Water
 Dimer Ionization: ab initio Molecular Dynamic Simulation Study

Supplementary Information

Ming-Kang Tsai ${ }^{1, * *}$, Jer-Lai Kuo ${ }^{2, *}$, and Jian-Ming Lu ${ }^{3,4}$

1. Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting-Chow Rd., Taipei, 11677, Taiwan
2. Institute of Atomic and Molecular Science, Academia Sinica, 1, Roosevelt Rd., Sec. 4, Taipei, 10617, Taiwan
3. National Center for High-Performance Computing, 28, Nanke 3rd Rd., Sinshih Dist., Tainan City, 74147, Taiwan
4. Department of Mechanical Engineering, Southern Taiwan University, 1, Nan-Tai Street, Yongkang Dist., Tainan City, 71005, Taiwan
5. Justification of sampled trajectories S2
6. Cartesian coordinates of the dimeric derivatives S3
7. Dynamics of Δ Epot (red), Ekin (blue), and Δ Etot fs for $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \quad$ S4
8. Neutral cluster dynamics of $r_{O O}, r_{O H}$, and $\theta_{W}^{*} \quad \mathrm{~S} 5$
9. Cationic cluster dynamics of $r_{O O}$ and spin density S6
10. Cationic cluster dynamics of $r_{O H} \quad \mathrm{~S} 10$
11. Excited state analysis S17

The 200 fs waiting time is meant to confirm if there is any correlation problem between the successive cationic events for the first 20 trajectories. An analysis on the dynamics of the norm vector of water molecule in respect to $r_{0 o}$ axis is carried out. The rotation (or flipping) period is estimated at about 147 fs (based upon red curve in Figure S2: 34 maxima are counted with the flipping amplitude large than 20 degree in respect to the prior minimum within time step $=1000-6000 \mathrm{fs}$ of the neutral water dimer simulation) and the average flipping amplitude of 37 degree.

This suggests the 50 fs interval per cation sampling should have about 12 degree slipping difference for one water in respect to $r_{O O}$ axis without taking account the geometrical change of other degrees of freedom, e.g. HOH bending, OH vibration, intermolecular OO vibration, and dihedral angle of $C_{2 v}^{W 1}-r_{O O}-C_{2 v}^{W 2}$. The similarity of the dynamics of $r_{O O}$, e.g. the ionized events of 1700-1950 fs shown in

Figure S 4 , is attributed by: (1) simplified one dimensional presentation of using $r_{O O}$;
(2) size of the finite degree of freedom for water dimer. For instance, similarity of
$r_{O O}$ can still be found for the ionization events of 4600-5000 where 200 fs (>> 147 fs , the average flipping period) interval was used.

Table S1. Cartesian coordinates for the dimeric derivatives optimized at CCSD/aug-cc-pVDZ where $h m-\left(\mathrm{HO}^{*}\right) \cdot\left(\mathrm{OH}_{2}\right)$ is taken from Reference 10

$\left(\mathrm{HO}^{*}\right) \cdot \mathrm{H}_{3} \mathrm{O}^{+}$			
O	-1.34780	-0.07697	0.09033
H	0.14047	0.06511	-0.00821
H	-1.96298	0.61532	-0.24027
O	1.17927	0.03481	-0.10614
H	1.63545	0.72216	0.41459
H	1.54571	-0.84322	0.11260

	$h m-\left(\mathrm{H}_{2} \mathrm{O}^{+}\right) \cdot\left(\mathrm{OH}_{2}\right)$		
O	-1.01387	-0.03058	0.12193
H	-1.14302	-0.62347	-0.64994
H	-1.24492	0.86809	-0.19772
O	1.01389	-0.03058	-0.12194
H	1.24483	0.86812	0.19772
H	1.14297	-0.62346	0.64995

trans- $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$			
O	-1.53175	0.00142	-0.12209
H	-0.57696	-0.00119	0.04643
H	-1.93073	-0.00883	0.75479
O	1.40351	-0.00119	0.11082
H	1.76769	-0.75848	-0.36344
H	1.76595	0.76663	-0.34763

Figure S1. Dynamics of Δ Epot (red), Ekin (blue), and Δ Etot fs for $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ simulation where Δ is calculated in respect to time step $=0 \mathrm{fs}$. The vertical orange dashed line shows the collection of the first ionization events.

Figure S2. Dynamics of OO and OH distances in \AA for $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ simulation. Each solid and dotted lines of the same color correspond to the distance of the particular hydrogen to either oxygen atoms.

Figure S3. Dynamics of water molecule rotation for $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ simulation, in which the angles $\left(\theta_{W}^{*}\right)$ between the norm vector of each water $\left(v_{W 1}^{n} / v_{W 2}^{n}\right)$ and $r_{O o}$ are plotted in red and blue, respectively, and the distance of $r_{O O}$ is shown by the right axis in \AA.

1000

1150

1300

1450

1050

1200

1350

1500

1100

1400

Figure S4. Dynamics of $\mathrm{r}_{O O}$ in \AA (black line by left axis) and the spin density of each water molecule (red/blue dots by right axis) for the 500 fs $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. The red/green boxes represent the event of successful/unsuccessful electron transfer, respectively.

1600

1750

1900

2200

1800

1950

2400

1700

1850

2000

2600

Figure S5. Dynamics of $\mathrm{r}_{O O}$ in \AA (black line by left axis) and the spin density of each water molecule (red/blue dots by right axis) for the $500 \mathrm{fs}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. The red boxes represent the event of successful electron transfer.

Figure S6. Dynamics of $\mathrm{r}_{O O}$ in \AA (black line by left axis) and the spin density of each water molecule (red/blue dots by right axis) for the $500 \mathrm{fs}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. The red/green boxes represent the event of successful/unsuccessful electron transfer, respectively.

5200

5800

5400

5600

Figure S7. Dynamics of $r_{o o}$ in \AA (black line by left axis) and the spin density of each water molecule (red/blue dots by right axis) for the 500 fs $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. The red boxes represent the event of successful electron transfer, respectively.

1000

1100

1200

1050

Figure S8. Dynamics of r_{OH} in \AA for the $500 \mathrm{fs}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. Legend and axis label are listed in upper left.

1500

1350

Figure S9 Dynamics of r_{OH} in \AA for the $500 \mathrm{fs}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. Legend and axis label are the same as that in upper left of Figure S8.

1600

1700

1800

1650

Figure S10 Dynamics of r_{OH} in \AA for the 500 fs $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. Legend and axis label are the same as that in upper left of Figure S8.

1900

2400

1950

Figure S11 Dynamics of r_{OH} in \AA for the $500 \mathrm{fs}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. Legend and axis label are the same as that in upper left of Figure S8.

Figure S12 Dynamics of r_{OH} in \AA for the 500 fs $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. Legend and axis label are the same as that in upper left of Figure S8.

Figure S13 Dynamics of r_{OH} in \AA for the 500 fs $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. Legend and axis label are the same as that in upper left of Figure S8.

Figure S14 Dynamics of $\mathrm{r}_{O H}$ in \AA for the 500 fs $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}$simulations. The number above each plot denotes the time step of ionization in fs. Legend and axis label are the same as that in upper left of Figure S8.

Figure 15. 500 fs excited state analysis along the trajectory of the time step $=1050 \mathrm{fs}$ ionization event. The first four excitation energies (solid color lines) are plotted in eV by the left axis, and the corresponding color-coded calculated oscillator strengths (dashed lines) are shown by the right axis.

Figure S16. 500 fs excited state analysis along the trajectory of the time step $=1150 \mathrm{fs}$ ionization event. The first four excitation energies (solid color lines) are plotted in eV by the left axis, and the corresponding color-coded calculated oscillator strengths (dashed lines) are shown by the right axis.

Figure S17. 500 fs excited state analysis along the trajectory of the time step $=1450 \mathrm{fs}$ ionization event. The first four excitation energies (solid color lines) are plotted in eV by the left axis, and the corresponding color-coded calculated oscillator strengths (dashed lines) are shown by the right axis.

Figure S18. 500 fs excited state analysis along the trajectory of the time step $=2800 \mathrm{fs}$ ionization event. The first four excitation energies (solid color lines) are plotted in eV by the left axis, and the corresponding color-coded calculated oscillator strengths (dashed lines) are shown by the right axis.

Figure S19. 500 fs excited state analysis along the trajectory of the time step $=5200 \mathrm{fs}$ ionization event. The first four excitation energies (solid color lines) are plotted in eV by the left axis, and the corresponding color-coded calculated oscillator strengths (dashed lines) are shown by the right axis.

Figure S20. 500 fs excited state analysis along the trajectory of the time step $=5400 \mathrm{fs}$ ionization event. The first four excitation energies (solid color lines) are plotted in eV by the left axis, and the corresponding color-coded calculated oscillator strengths (dashed lines) are shown by the right axis.

