Supporting Information

S.1 Synthesis of Oligonucleotides

Oligonucleotides (ON1-ON6, Tab. 1) were synthesized at the 1.0 μ mol scale using an automated DNA synthesizer. Standard cycle procedures were applied for unmodified phosphoramidites using 0.45 M solution of 1*H*-tetrazole as activator. Stepwise coupling yields, as determined by a spectrophotometric DMT+ assay were > 99% for standard phosphoramidites, > 95% for LNA amidites (15 min coupling time), and > 80% for incorporation of terpy-UNA (15 min coupling time). DMT+ was collected after deblocking, and absorbance at 495 nm was measured and compared to that of the following step.

The final step for the synthesis of ONs containing a 5'-C6-SH modification (ON1-ON4, Tab. 1) was the coupling of thiol-modifier C6 S-S (Glen Research, Virginia, USA), using 0.45 M solution of 1*H*-tetrazole as activator and 15 min coupling time. Removal of the nucleobase protecting groups and cleavage from solid support was effected using standard conditions (32% aqueous ammonia for 12 h at 55 $^{\circ}$ C).

All ONs were purified by DMT-ON RP-HPLC using a C18-column (10 μ m, 300 mm × 7.8 mm) and the following eluent system: eluent-A, 95% 0.1 M Et₃N, 5% CH₃CN; eluent-B, 25% 0.1 M Et₃NH·HCO₃, 75% CH₃CN; gradient, 0-5 min isocratic hold of 100% eluent-A, followed by a linear gradient to 55% eluent-B over 75 min at a flow rate of 1.0 mL/min.

Fractions containing pure ONs were collected and evaporated on speed-vac. ONs comprising a 5'-C6-SH modification were treated with dithiothreitol (100 mM, 100 μ L, adjusted to pH 8.3-8.5 using triethylamine) for 30 min, followed by precipitation (anhydrous acetone, 1000 μ L, -18 °C, 12 h) and washing with anhydrous acetone (3×1000 μ L). For ONs without 5'-C6-SH modification, evaporation was followed by detritylation (80% aq. AcOH, 20 min), precipitation (anhydrous acetone, 1000 μ L, -18 °C, 12 h) and washing with anhydrous acetone (3×1000 μ L).

All ONs were finally desalted using commercially available NAPTM-10 columns (GE Healthcare, Buckinghamshire, UK). Their composition and purity were verified by MALDI-MS analysis and ion-exchange HPLC (100 mm \times 4.6 mm column size), respectively. The following eluent system was used: eluent-A, 25 mM Tris-Cl, 1 mM EDTA (pH 8.0); eluent-B, 1 M NaCl, gradient, 0-5 min isocratic hold of 95% eluent-A followed by a linear gradient to 70% eluent-B over 41 min at a flow rate of 0.75 mL/min. MALDI spectra are shown in Figs. S1-S6.

Fig. S1. MALDI-MS spectra of ON1 (5'-HS-C6-d(CGCATTATTACGC)).

Fig. S2. MALDI-MS spectra of ON2 (5'-HS-C6-d(CGCAT<u>X</u>ATTACGC))

Fig. S3. MALDI-MS spectra of ON3 (5'-HS-C6-d(CGC^LATTAXTACGCAC)).

Fig. S4. MALDI-MS spectra of ON4 (5´-HS-C6-d(CG<u>C^L</u>ATTATTACGCAC)).

Fig. S5. MALDI-MS spectra of ON5 (5'-d(GT<u>G^L</u>CGTAA<u>X</u>AATGCG)).

Fig. S6. MALDI-MS spectra of ON6 (5'-d(GCGTAATAATGCG)).

Fig. S7. Tunnelling current/overpotential correlations for terpy-free15-base ss-DNA (ON4) functionalized by RuCl₃ on a Au(111)-electrode surface in 10 mM KH₂PO₄/K₂HPO₄ (pH 7.0). The bias voltages are indicated. The modulus of the negative current values was taken for the negative bias voltages to aid presentation of the STS-spectra side-by-side. Scan rate 0.6 V s⁻¹.

S.2 Ionic Strength Dependence of the STS Bandwidth

The *in situ* STS peak width depends primarily on the potential distribution in the tunnelling gap, in turn determined by the ionic strength^{47,67-69}. Two parameters are crucial, viz. the fraction of the potential drop from the working electrode surface at the site of the redox centre, ξ and the fraction of the bias voltage drop at this same site, γ . In crude terms $\xi = 1$ corresponds to the full potential drop as common at semi-infinite electrode surfaces but the distribution is more composite in the tunneling gap of widths, *L* comparable to the Debye length, L_d of the electrolyte. L_d varies from ≈ 1 nm at electrolyte concentrations around 0.1 M to ≈ 3 nm at 0.01 M. The tunnelling gap width *L* cannot be determined precisely but is comparable to the "size" of the molecules. The latter depends on the molecular conformation but values around 3 nm are likely. Presently we note that within the Debye approximation ξ and γ are correlated^{47,67-69}

$$\xi(z;L_d) = 1 - \gamma(L-z;L_d) - \gamma(z;L_d) ; \qquad \gamma(z;L_d) = \frac{\exp\left(\frac{z}{L_d}\right) - \exp\left(-\frac{z}{L_d}\right)}{\exp\left(\frac{L}{L_d}\right) - \exp\left(-\frac{L}{L_d}\right)}$$
(S1)

where z is the position of the redox group counted from the substrate electrode surface. The width at half height of the tunneling peak, $\Delta_{\eta}^{47,67-69}$ is

$$\frac{\Delta_{\eta}}{k_{B}T} = \frac{4arch(2)}{1 - \gamma(L - z; L_{d}) - \gamma(z; L_{d})}$$

(S2)

The following is then notable:

• At high ionic strength $L_d \ll L$. For a symmetric location of the redox centre, $z = \frac{1}{2}$, and eqs.(1) and (2) reduce to

$$\gamma^{high.ion}(\frac{1}{2}L; L_d \ll L) \approx exp\left(-\frac{1}{2}\frac{L}{L_d}\right) \ll 1; \qquad \qquad \frac{\Delta_{\eta}^{high.ion}}{k_B T} \approx 4arch(2) = 5.2$$
(S3)

while low ionic strength gives

$$\gamma^{low.ion}(\frac{1}{2}L; L_d \approx L) \approx \frac{1}{e^{\frac{1}{2}} + e^{-\frac{1}{2}}} = 0.443 \quad ; \quad \frac{\Delta_{\eta}^{low.ion}}{k_B T} \approx \frac{4arch(2) \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}}\right)}{e^{\frac{1}{2}} + e^{-\frac{1}{2}} - 2}$$
(S4)

• Δ_{η} thus increases significantly, from $\Delta_{\eta} \approx 5.2 \times k_B T \approx 0.13$ eV to about $\approx 46 \times k_B T \approx 1.16$ eV when the ionic strength is lowered from high values, say 0.1-1 M to low values, say < 0.01 M for $z = \frac{1}{2}$. The width also rises drastically when the redox group is located close to either of the enclosing electrode surfaces.

• γ is small, i.e. close to zero at high ionic strength but close to $\frac{1}{2}$ at low ionic strength for symmetric location of the redox group. Significantly larger values arise when the redox group is close to either of the enclosing electrode surfaces.