Electronic Supplementary Information

Solution processed bulk heterojunction photovoltaic cells based on a squaraine compound

Guo Chen,^a Hisahiro Sasabe,^{*a} Zhongqiang Wang,^a Xiaofeng Wang,^a Ziruo Hong,^{*a} Junji Kido^a and Yang Yang^b

^a Department of Organic Device Engineering, Graduate School of Science and Engineering, Research Center for Organic Electronics (ROEL), Yamagata University,, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan. E-mail: h-sasabe@yz.yamagata-u.ac.jp; ziruo@yz.yamagata-u.ac.jp

^b Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA

Fig. S1 (a) Dark J-V characteristics, (b) J-V characteristics illuminated at 100 mW/cm² (AM 1.5G solar spectrum) for the SQ:PC₆₀BM (1:5, 70nm) solar cells using MoO₃ and PEDOT:PSS as anode buffer layers. Note the device data in this figure were based on PC₆₀BM, and thus showed low photocurrent.

Fig. S2 (a) Dark J-V characteristics, (b) J-V characteristics illuminated at 100 mW/cm² (AM 1.5G) for the SQ:PC₇₀BM (1:5) BHJ solar cells with varied thicknesses of the active layer.

Fig. S3 Comparison of (a) bright-state J-V characteristics; (b) dark-state J-V characteristics; c) external quantum efficiency of SQ:PC₇₀BM (1:5) cells at room temperature and 80 °C.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Fig. S4<u>Current density vs voltage characteristic of SQ:PC₇₀BM (1:5) single carrier devices used for a) hole and b) electron mobility measurement.</u>

Fig. S5 Linear (a) and logarithmic (b) J-V characteristics of SQ:PC₇₀BM (1:5, 1:19, 1:99) cells and PC₇₀BM-only cell illuminated at 100 mW/cm² of AM 1.5G; (c) EQE spectra; d) Voc vs incident light intensity.

Fig. S6 J-V characteristics from 1:5 SQ:PC₇₀BM ratio cells based on as-synthesized and sublimated SQ at (a) room temperature and (b) 80 °C. It shows almost identical *J-V* characteristics and η_p from the PV cells based on as-synthesized and sublimated SQ.

HTL	$J_{\rm sc}$ (mA/ cm ²)	$V_{ m oc}$ (V)	FF	η_p (%) ($P_0 = 100 \text{ mW/cm}^2$)
MoO ₃	7.48	0.91	0.41	2.81
PEDOT:PSS	4.95	0.79	0.42	1.64

Table SI. PV performance for the SQ:PC₆₀BM (1:5) BHJ solar cells using MoO₃ and PEDOT:PSS as anode buffers, respectively. Note PC60BM was used for optimization of buffer layers.

Table SII. PV performance for the SQ:PC₇₀BM (1:5) BHJ solar cells with varied thicknesses of the active layer.

Thickness (nm)	$J_{\rm sc}~({\rm mA/~cm}^2)$	$V_{\rm oc}$ (V)	FF	η_p (%) ($P_0 = 100 \text{ mW/cm}^2$)
50 nm	8.26	0.94	0.48	3.68
70 nm	10.75	0.94	0.43	4.30
90 nm	10.11	0.94	0.37	3.54