Electronic Supplementary Information to

Understanding CeO₂ as Deacon catalyst by probe molecule adsorption and in situ infrared characterisation

Ramzi Farra,^{*a*} Sabine Wrabetz,^{*a*} Manfred E. Schuster,^{*a*} Eugen Stotz,^{*a*} Neil G. Hamilton,^{*a*} Amol P. Amrute,^{*b*} Javier Pérez-Ramírez,^{*b*} Núria López,^{*c*} and Detre Teschner^{*a*}

- S.I.1 DFT calculations:
 - S.I.1a. Relevant structures calculated: Figure S. I.1
 - S.I.1b. Vibrations corresponding to hydroxyl groups on CeO₂: **Table S. I. 1**.
 - S.I.1c. Ammonia adsorption and vibrations: **Table S. I. 2**.
 - S.I.1d. CO₂ adsorption and vibrations: **Table S. I. 3**.
 - S.I.1e. CO adsorption and vibrations: Table S. I. 4.
- S.I.2 Thermogravimetric profile of CeO₂-D: **Figure S. I.2**
- S.I.3 Fit example of the OH region during in situ FTIR experiment: Figure S. I.3

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is O The Owner Societies 2013

S.I.1 DFT calculations.

Figure S. I. 1. Schematic representation of the clean $CeO_2(111)$ surface (a), surface hydroxyl (b), surface on top hydroxyl (c) and chlorine substitution with a concomitant hydroxyl group (d). Ammonia adsorption on models (a-d) are represented in figures (e-h); CO_2 adsorption on figures (i-j) and adsorption on an oxygen vacancy (m) and CO adsorption on the (a-d) models shown in (n-q). Grey spheres represent Ce atoms, red O, blue H, yellow C and green Cl.

	CeO ₂ H	CeO ₂ -OH _{top}	CeO ₂ -OH _{bridge}	CeO ₂ H-OH _{top}	CeO ₂ H-Cl
$\mu_{\rm B}$	0.5	1.0	1.0	0.0	2.0
1	3741 (s)	3714 (s)	3691 (s)	3786 (s)	3756 (s)
2				2953 (s)	
3				986 (b)	
4				890 (b)	

Table S. I. 1. Vibrational frequencies for hydroxyl groups on CeO₂, ν in cm⁻¹, for vibrations higher than 800 cm⁻¹. Frequency assignment labels: s: OH stretching; (b) bending modes. μ_B : Bohr magneton

Table S. I. 2. Adsorption energies, E_{ads} in kJ mol⁻¹, of ammonia on different CeO₂ configurations (with respect to different model surfaces and gas-phase NH₃) and corresponding vibrational frequencies, v in cm⁻¹ (for the vibrations stronger than 800 cm⁻¹). Frequency assignment labels: symmetric stretching (v_s), asymmetric stretching (v_a), bending (δ modes). The labelling follows that of ref. [1] pages 117 and 131. μ_B : Bohr magneton

	Site	$\mu_{\rm B}$	Fig. S.I. 1	E_{ads} (kJ mol ⁻¹)	v(cm ⁻¹)
Gas-phase NH ₃		0.0			3509 (ν_a), 3506 (ν_a), 3370 (ν_s) 1627 δ_d (HNH), 1626 δ_d (HNH), 1021 δ (HNH)
Gas-phase NH ₄ ⁺		0.0			$\begin{array}{c} 2873 \ (v_{a}), 2866(v_{a}), 2862 \ (v_{a}), \\ 2812 \ (v_{s}), 1536 \ \delta_{d} \ (\text{HNH}), \\ 1532 \ \delta_{d} \ (\text{HNH}), \ 1271 \ \delta_{d} \ (\text{HNH}), \\ 1265 \ \delta_{d} \ (\text{HNH}), \ 1260 \ \delta_{d} \ (\text{HNH}) \end{array}$
CeO ₂	Ce N _{down}	0.0	(e)	50	3534 (v _a), 3529 (v _a), 3397 (v _s), 1603 δ_d (HNH), 1593 δ_d (HNH), 1018 δ_s (HNH)
CeO ₂	O ₃ H _{down}	0.0		9	3690 (v _a), 3550 (v _a), 3290 (v _s),1648 δ _d (HNH), 1582 δ _d (HNH)
CeO ₂ H	H N _{down}		(f)	39	3385 (ν_a), 3376 (ν_a), 3367 (ν_a), 1566 δ_d (HNH), 1562 δ_d (HNH), 997 δ_s (HNH), 948 δ_s (HNH)
CeO ₂ H-OH	H N _{down}	0.5	(g)	31	3662 (OH _s), 3552 (v _a), 3476 (v _a), 3119 (v _s),2559 (HOH), 1632 δ_d (HNH), 1583 δ_d (HNH) 1145 δ_s (HNH), 1131 δ_s (HNH), 1021 δ_s (HNH)
CeO ₂ -H-Cl	H N _{down}	2.0	(h)	59	3513 (OH _s), 3510 (v _a), 3393(v _a), 2948 (v _s), 1615 δ_d (HNH), 1612 δ_d (HNH), 1096 δ_s (HNH), 972 δ_s (HNH), 954 δ_s (HNH)
CeO ₂ -H	NH ₄ at O	0.0		-113	$\begin{array}{l} 3257 \ (\nu_{a}), \ 3250 \ (\nu_{a}), \ 3173 \ (\nu_{a}), \\ 2974 \ (\nu_{s}), \\ 1639 \ \delta_{d}(\text{HNH}), \ 1637 \ \delta_{d}(\text{HNH}), \\ 1416 \ \delta_{d}(\text{HNH}), \ 1408\delta_{d}(\text{HNH}), \\ 1340 \ \delta_{d}(\text{HNH}) \end{array}$
CeO ₂ -H-Cl	NH ₄ at Cl	0.0		-118	3583(ν_a), 3476(ν_a), 3271(ν_a), 2213 (ν_s), 1618 δ_d (HNH), 1611 δ_d (HNH), 1415 δ_d (HNH), 1382 δ_d (HNH), 1274 δ_d (HNH)

Table S. I. 3. Adsorption energies, E_{ads} in kJ mol⁻¹, of CO₂ on different CeO₂ configurations and corresponding vibrational frequencies, v in cm⁻¹ (for the vibrations stronger than 800 cm⁻¹). Negative adsorption energies indicate endothermic processes. Frequency assignment labels: symmetric stretching (v_s), asymmetric stretching (v_a), bending (δ modes). The labelling follows that of ref. [1] page 108. *Multiple adsorption on oxygen vacancies leads to large binding energies linked to the position of the vacancy states, as those are poorly reproduced by PBE+U only a tentative assignment is presented. μ_B : Bohr magneton

	Site	μ_{B}	Fig. S.I. 1	Eads	ν
				$(kJ mol^{-1})$	(cm^{-1})
Gas-phase CO ₂		0.0			$2342 (v_a), 1310 (v_s)$
Gas-phase CO_3^{2-}		0.0			1519 (v_a), 1425(v_a)
Gas-phase		0.0			3511(OH), 1874 (v _s)
HCO ₃ ⁻					
CeO ₂	O carbonate	0.0	(i)	43	1527 (v _a), 1057 (v _a), 829
					(π(CO ₃))
CeO _{2-x}	Multiple adsorption	0.0	(m)	>120	
	(3)*				
CeO _{2-x}	Vacancy O-CO	0.0	(m)	14	$1889(v_a), 1105(v_s)$
CeO ₂ H	Hydrocarbonate	1.0	(j)	-10	3720 (OH s), 2344 (v _a),
					$1307 (v_s)$
CeO ₂ H-OH	Hydrocarbonate	0.0	(k)	18	3618 (OH s), 3588 (OH
					s), $1769(v_s)$, $1242(v_s)$,
					$1132 (v_s)$
CeO ₂ H-Cl	Hydrocarbonate	2.0	(1)	1	3717 (OH s), 2247 (v _a),
					$1252 (v_s)$

Table S. I. 4. Adsorption energies, E_{ads} in kJ mol⁻¹, of CO on different CeO₂ configurations and corresponding vibrational frequencies, n in cm⁻¹ (for the vibrations stronger than 800 cm⁻¹). Negative adsorption energies indicate endothermic processes. Frequency assignment labels: stretching (s), bending (b). μ_B : Bohr magneton

	Site	$\mu_{\rm B}$	Fig. S.I.	E _{ads}	ν
			1	$(kJ mol^{-1})$	(cm^{-1})
Gas-phase CO					2105 (□)
CeO ₂	$Ce^{4+}C_{down}$	0.0	(n)	18	2086 (s)
CeO ₂ H	Ce ⁴⁺ C _{down}	0.5	(0)	12	3843 (OH s), 2127 (s)
CeO ₂ H-OH	O C _{down}	0.0	(p)	48	3781 (OHs), 2898
					(OHs), 2113(s), 957(b),
					881(b)
CeO ₂ H-Cl	Ce ⁴⁺ C _{down}	2.0	(q)	23	3634 (OH s), 2157 (s)

S.I.2 Thermogravimetric profile of CeO₂-D and mass spectrometry analysis of effluent gases.

Fig. S. I. 2. Thermogravimetric (TGA) profile of CeO₂-D coupled to mass spectrometry (MS) profiles for H₂O (AMU 18) and for Cl (AMU 35). The weight loss of the equilibrated sample occurred in several steps. Up to 490 K, removal of surface impurities, such as physically adsorbed water, and the water of crystallisation of the CeCl₃·6H₂O phase took place. Weight loss between 490 and 660 K was attributed to chlorine removal. Similar assignments were made by Amrute *et al.* (*J. Catal.*, 2012, **286**, 287-297).

Procedure: Thermogravimetric analysis was performed in a Mettler Toledo TGA/DSC 1 Star system analyser connected to a Pfeiffer Vacuum ThermoStar GSD 320 T1 Gas Analysis System. Analyses were performed in He ($20 \text{ cm}^3 \text{ STP min}^{-1}$), ramping the temperature from 323 to 1273 K at 20 K min⁻¹. AMU 32 (O₂), 35 (Cl), 18 (H₂O), and 71 (Cl₂) were continuously monitored.

S.I.3 Fit example of the OH region during *in situ* FTIR experiment.

Fig. S. I. 3. An example of fitting the OH region of *in situ* FTIR spectra observed during Deacon reaction. The red peak is integrated and discussed in the main text.

REFERENCES

[1] K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds 4th Edition Wiley and Sons, New York 1986