Microsolvation of Dimethylphosphate: A molecular model for the interaction of cell membranes with water Supporting Information

César Ibargüen,[†] Marcela Manrique–Moreno,[†] C. Z. Hadad,[†] Jorge David,[‡] and

Albeiro Restrepo*,†

Instituto de Química, Universidad de Antioquia, AA 1226 Medellín, Colombia, and Escuela de Ciencias y Humanidades, Departamento de Ciencias Básicas, Universidad Eafit AA 3300,

Medellín, Colombia

E-mail: albeiro@matematicas.udea.edu.co

*To whom correspondence should be addressed [†]Universidad de Antioquia [‡]Universidad Eafit Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Label	Conf	ΔE	ΔE	ΔE	BE	BE	BE	ΔBE	ΔBE	ΔBE	$\% x_i$	$v_a PO_2^-$
		CCSD(T)	MP2	B3LYP	CCSD(T)	MP2	B3LYP	CCSD(T)	MP2	B3LYP		$\mathrm{cm}^{-\overline{1}}$
 W_1S_8	aa	2.7	2.7	1.6	15.7	15.8	14.9	-0.5	-0.4	-1.0	0.65	1233
W_1S_9	ag	3.4	3.3	3.9	13.0	12.0	11.0	2.2	3.3	2.9	0.18	1303
$W_{1}S_{10}$	aa	4.5	4.2	3.3	13.9	14.3	13.2	1.4	1.0	0.7	0.03	1257
$W_{1}S_{11}$	aa	5.0	5.0	5.2	13.4	13.5	11.5	1.9	1.8	2.5	0.01	1286

Table 1: Energetic analysis for $[(H_2O)_1 DMP]^-$ clusters. Only those structres above 2.0 kcal/mol of the global minimum are shown. See text for definition of terms. The structures are depicted in Figure 1.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Label	Conf	ΔE	ΔE	ΔE	BE	BE	BE	ΔBE	ΔBE	ΔBE	$\% x_i$	$v_a PO_2^-$
		CCSD(T)	MP2	B3LYP	CCSD(T)	MP2	B3LYP	CCSD(T)	MP2	B3LYP		cm^{-1}
W_2S_7	ag	2.1	2.0	1.7	27.5	28.7	26.2	2.1	0.9	0.6	1.35	1288
W_2S_8	ag	2.8	2.9	2.5	26.7	27.9	25.4	2.8	1.7	1.4	0.42	1279
W_2S_9	ag	3.1	2.9	1.8	26.5	27.9	26.0	3.1	1.7	0.8	0.29	1274
W_2S_{10}	ag	3.1	3.1	2.4	26.4	27.6	25.5	3.1	2.0	1.3	0.26	1272
$W_2 S_{11}$	aa	3.2	3.2	2.2	26.4	29.6	27.2	3.2	0.1	-0.4	0.25	1236
W_2S_{12}	ag	3.3	3.4	3.5	26.3	26.1	24.4	3.3	3.6	2.4	0.22	1305
W_2S_{13}	ag	3.4	3.4	3.3	26.2	27.4	24.5	3.4	2.2	2.3	0.16	1268
W_2S_{14}	aa	3.6	3.5	1.6	26.0	28.1	27.8	3.6	1.5	-1.0	0.13	1223
W_2S_{15}	gg	3.7	3.5	2.0	25.9	26.1	24.8	3.7	3.5	2.1	0.09	1305
W_2S_{16}	gg	4.0	3.7	2.0	25.6	25.9	24.8	4.0	3.7	2.0	0.06	1289
W_2S_{17}	gg	4.3	4.2	1.5	25.3	25.5	25.3	4.3	4.2	1.5	0.03	1273
W_2S_{18}	aa	4.6	4.9	3.9	25.0	27.9	25.5	4.6	1.7	1.3	0.02	1255
$W_{2}S_{19}$	ag	4.9	4.7	2.2	24.7	26.1	25.7	4.9	3.5	1.2	0.01	1247
$W_{2}S_{20}$	aa	4.9	4.7	4.1	24.7	29.3	25.3	4.9	0.3	1.5	0.01	1253
W_2S_{21}	ag	5.3	5.0	2.8	24.3	25.7	25.0	5.3	3.9	1.8	pprox 0.00	1277
W_2S_{22}	gg	5.7	1.7	1.7	23.9	27.9	25.1	5.7	1.7	1.7	pprox 0.00	1299
W_2S_{23}	aa	6.5	6.3	3.4	23.1	26.5	26.0	6.5	3.1	0.8	pprox 0.00	1222
W_2S_{24}	ag	8.5	8.2	7.4	21.1	22.6	20.5	8.5	7.0	6.3	pprox 0.00	1310

Table 2: Energetic analysis for $[(H_2O)_2 DMP]^-$ clusters. Only those structres above 2.0 kcal/mol of the global minimum are shown. See text for definition of terms. The structures are depicted in Figure 2.

Label	Conf	ΔE	ΔE	ΔE	BE	BE	BE	ΔBE	ΔBE	ΔBE	$\% x_i$	$v_a PO_2^-$
		CCSD(T)	MP2	B3LYP	CCSD(T)	MP2	B3LYP	CCSD(T)	MP2	B3LYP		cm^{-1}
W ₃ S ₁₃	ag	2.1	1.9	0.3	41.3	41.3	40.3	0.9	0.8	-2.2	1.16	1253
W_3S_{14}	ag	2.1	1.8	0.8	41.3	41.5	39.7	0.9	0.6	-1.7	1.16	1298
W_3S_{15}	gg	2.4	2.0	0.7	40.1	40.1	37.3	2.0	2.0	0.8	0.74	1294
W_3S_{16}	ag	2.5	2.8	0.5	40.9	40.5	40.1	1.3	1.7	-2.0	0.70	1246
$W_{3}S_{17}$	aa	2.5	2.4	0.3	42.9	42.9	40.3	-0.7	-0.8	-2.2	0.61	1212
W_3S_{18}	ag	2.5	2.1	1.3	40.9	41.2	39.3	1.3	0.9	-1.2	0.61	1287
$W_{3}S_{19}$	ag	2.8	2.7	0.9	40.6	40.6	39.7	1.6	1.5	-1.6	0.37	1244
$W_{3}S_{20}$	aa	3.1	3.0	2.1	42.3	42.3	38.5	-0.1	-0.2	-0.4	0.23	1227
$W_{3}S_{21}$	ag	3.2	2.9	3.6	40.2	40.3	37.0	2.0	1.8	1.0	0.17	1279
$W_{3}S_{22}$	gg	3.3	3.1	2.4	39.5	39.1	35.6	2.7	3.0	2.5	0.16	1289
$W_{3}S_{23}$	ag	3.3	3.0	2.2	40.1	40.2	38.4	2.1	1.9	-0.3	0.16	1268
$W_{3}S_{24}$	ag	3.4	3.1	2.3	40.0	40.2	38.3	2.2	1.9	-0.2	0.14	1268
$W_{3}S_{25}$	gg	3.4	3.2	1.3	39.1	39.0	36.6	3.1	3.1	1.4	0.12	1280
$W_{3}S_{26}$	ag	3.6	3.3	3.6	39.8	39.9	37.0	2.4	2.2	1.0	0.10	1291
$W_{3}S_{27}$	aa	3.7	3.5	1.7	41.7	41.8	38.8	0.5	0.3	-0.8	0.08	1215
$W_{3}S_{28}$	gg	4.0	3.7	1.6	38.6	38.4	36.4	3.6	3.7	1.7	0.05	1282
$W_{3}S_{29}$	gg	4.1	3.6	1.5	39.0	38.6	36.4	3.2	3.6	1.6	0.04	1290
$W_{3}S_{30}$	aa	4.1	3.9	3.4	41.3	41.4	37.2	0.9	0.8	0.9	0.04	1251
$W_{3}S_{31}$	ag	4.4	4.0	1.5	39.0	39.2	39.1	3.2	2.9	-1.1	0.03	1241
$W_{3}S_{32}$	gg	4.5	3.9	1.9	38.4	38.3	36.1	3.6	3.9	2.0	0.02	1308
$W_{3}S_{33}$	aa	4.6	4.2	1.9	40.8	41.1	38.7	1.4	1.0	-0.6	0.02	1216
$W_{3}S_{34}$	aa	4.6	4.3	3.1	40.8	41.0	37.5	1.4	1.1	0.6	0.02	1247
$W_{3}S_{35}$	aa	4.7	4.4	1.9	40.6	40.9	38.7	1.5	1.2	-0.6	0.01	1213
$W_{3}S_{36}$	gg	4.8	4.4	2.6	38.3	37.7	35.3	3.9	4.4	2.7	0.01	1297
$W_{3}S_{37}$	gg	4.8	4.5	2.5	37.7	37.7	35.5	4.5	4.4	2.6	0.01	1300

Table 3: Energetic analysis for $[(H_2O)_3 DMP]^-$ clusters. Only those structres above 2.0 kcal/mol of the global minimum are shown. See text for definition of terms. The structures are depicted in Figure 3.

Label	Conf	ΔE	ΔE	ΔE	BE	BE	BE	ΔBE	ΔBE	ΔBE	$\% x_i$	$v_a PO_2^-$
		CCSD(T)	MP2	B3LYP	CCSD(T)	MP2	B3LYP	CCSD(T)	MP2	B3LYP		cm ⁻¹
W ₃ S ₃₈	ag	4.9	4.3	3.2	38.5	38.9	37.4	3.7	3.2	0.7	0.01	1289
$W_{3}S_{39}$	ag	5.0	4.5	2.3	38.4	38.8	38.3	3.8	3.3	-0.2	0.01	1288
$W_{3}S_{40}$	ag	5.5	4.9	3.1	37.9	38.4	37.5	4.3	3.8	0.6	pprox 0.00	1274
W_3S_{41}	ag	5.6	5.1	3.3	37.8	38.2	37.3	4.4	3.9	0.7	pprox 0.00	1280
$W_{3}S_{42}$	aa	5.6	5.0	1.3	39.8	40.3	39.3	2.4	1.8	-1.2	pprox 0.00	1221
$W_{3}S_{43}$	ag	6.5	6.1	4.4	36.8	37.1	36.2	5.3	5.0	1.8	pprox 0.00	1281
W_3S_{44}	ag	6.6	6.3	6.0	36.8	37.0	34.6	5.4	5.1	3.5	pprox 0.00	1283
W_3S_{45}	gg	7.1	6.8	3.2	35.4	35.4	34.8	6.8	6.8	3.3	pprox 0.00	1286
$W_{3}S_{46}$	gg	7.2	2.6	2.2	35.4	39.5	35.8	6.8	2.6	2.3	pprox 0.00	1298
$W_{3}S_{47}$	gg	7.2	6.8	3.2	37.7	35.4	34.8	4.5	6.8	3.3	pprox 0.00	1265
W_3S_{48}	ag	7.3	6.9	5.6	36.1	36.4	35.0	6.1	5.8	3.1	pprox 0.00	1281
$W_{3}S_{49}$	ag	7.5	7.1	3.4	35.9	36.2	37.2	6.3	5.9	0.9	pprox 0.00	1236
$W_{3}S_{50}$	ag	8.1	7.6	4.6	35.2	35.7	36.0	6.9	6.4	2.0	pprox 0.00	1277
$W_{3}S_{51}$	ag	10.2	9.4	5.7	33.2	33.8	34.9	9.0	8.3	3.1	pprox 0.00	1278
W ₃ S ₅₂	aa	10.2	9.6	4.8	35.1	35.7	35.8	7.0	6.4	2.3	pprox 0.00	1217

Table 4: Energetic analysis for $[(H_2O)_3 DMP]^-$ clusters Part II. The structures are depicted in Figure 3.

 $W_1S_9(ag); \Delta E = 3.4$

Figure 1: Local minima on the $[(H_2O)_1 DMP]^- MP2/6-311++G^{**}$ PES. CCSD(T)//MP2 relative energies in kcal/mol with respect to W_1S_1 , only structures above 2.0 kcal/mol of the global minimum are included. Explicit $(CH_3O)_2 PO_2^- \leftrightarrow H_2O$ interactions are represented by dotted lines.

Figure 2: Local minima on the $[(H_2O)_2 DMP]^- MP2/6-311++G^{**}$ PES. CCSD(T)//MP2 relative energies in kcal/mol with respect to W_2S_1 , only structures above 2.0 kcal/mol of the global minimum are included. Explicit $(CH_3O)_2PO_2^- \leftrightarrow H_2O$ interactions are represented by dotted lines.

 $W_3S_{13}(ag); \Delta E = 2.1$

 $W_3S_{14}(ag); \Delta E = 2.1$

 $W_3S_{15}(gg): \Delta E = 2.4$

 $W_3S_{16}(gg): \Delta E = 2.5$

 $W_3S_{17}(aa); \Delta E = 2.5$

 $W_3S_{18}(ag); \Delta E = 2.5$

 $W_3S_{20}(aa): \Delta E = 3.1$

 $W_3S_{21}(ag); \Delta E = 3.2$

 $W_3S_{22}(gg); \Delta E = 3.3$

 $W_3S_{23}(ag): \Delta E = 3.3$

 $W_3S_{24}(ag): \Delta E = 3.4$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

 $W_3S_{25}(gg); \Delta E = 3.4$

 $W_3S_{26}(ag); \Delta E = 3.6$

 $W_3S_{27}(aa): \Delta E = 3.7$

 $W_3S_{28}(gg): \Delta E = 4.0$

 $W_3S_{29}(gg); \Delta E = 4.1$

 $W_3S_{30}(aa); \Delta E = 4.1$

 $W_3S_{31}(ag): \Delta E = 4.4$

 $W_3S_{32}(gg): \Delta E = 4.5$

 $W_3S_{33}(aa); \Delta E = 4.6$ $W_3S_{34}(aa); \Delta E = 4.6$

 $W_3S_{35}(aa): \Delta E = 4.7$

 $W_3S_{36}(gg): \Delta E = 4.8$

 $W_3S_{37}(gg); \Delta E = 4.8$

 $W_3S_{39}(ag): \Delta E = 5.0$

 $W_3S_{40}(ag): \Delta E = 5.5$

 $W_3S_{38}(ag); \Delta E = 4.9$

 $W_3S_{41}(ga); \Delta E = 5.6$

 $W_3S_{44}(ag): \Delta E = 6.6$

 $W_3S_{45}(gg); \Delta E = 7.1$

 $W_3S_{46}(gg); \Delta E = 7.2$

 $W_3S_{47}(gg): \Delta E = 7.2$

 $W_3S_{48}(ag): \Delta E = 7.3$

Figure 3: Local minima on the $[(H_2O)_3 DMP]^- MP2/6-311++G^{**}$ PES. CCSD(T)//MP2 relative energies in kcal/mol with respect to W_3S_1 , only structures above 2.0 kcal/mol of the global minimum are included. Explicit $(CH_3O)_2PO_2^- \leftrightarrow H_2O$ interactions are represented by dotted lines.