Supplementary Information

Formation and Infrared Absorption of Protonated Naphthalene $(1-C_{10}H_9^+)$ and $2-C_{10}H_9^+$) and Their Neutral Counterparts in Solid *Para*-Hydrogen

Mohammed Bahou,^a Yu-Jong Wu,^{b,*} and Yuan-Pern Lee^{a,c,*}

^aDepartment of Applied Chemistry and Institute of Molecular Science, National

Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan.

^bNational Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu

30076, Taiwan.

^c Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617,

Taiwan.

Author E-mail address: yjwu@nsrrc.org.tw;yplee@mail.nctu.edu.tw

Received xx xxxx. 2012

Table S1 Comparison of geometric parameters of isomers of $C_{10}H_9^+$ predicted with
B3PW91/6-311++G(2d,2p). The atomic numbering is according to Fig. S1. The unit
of Bond lengths is Å and the unit of angles is degree.

$C_{10}H_9^+$	$1 - C_{10} H_0^+$	$2 - C_{10} H_0^+$	$A_{a}-C_{1a}H_{a}^{+}$
geometry	1-010119	2-0119	-a-C10119
$r(C_1C_2)$	1.471	1.465	1.353
$r(C_2C_3)$	1.362	1.478	1.426
$r(C_3C_4)$	1.409	1.348	1.374
$r(C_4C_5)$	1.402	1.435	1.407
$r(C_5C_6)$	1.428	1.451	1.487
$r(C_1C_6)$	1.492	1.372	1.483
$r(C_7C_8)$	1.373	1.384	1.374
$r(C_8C_9)$	1.404	1.415	1.426
$r(C_6C_{10})$	1.387	1.433	1.483
$r(C_1H_{11})$	1.101	1.084	1.082
$r(C_3H_{13})$	1.080	1.081	1.082
$r(C_8H_{16})$	1.080	1.082	1.082
$r(C_{10}H_{18})$	1.082	1.081	1.082
$r(C_{x}H_{19})^{a}$	1.101	1.103	1.131
$\angle H_{11}C_1H_{19}$	102.15		
$\angle H_{12}C_2H_{19}$		101.04	
$\angle C_5 C_6 H_{19}$			99.33
$\angle C_1 C_2 C_3$	122.18	116.34	120.39
$\angle C_2 C_3 C_4$	119.32	121.21	122.17
$\angle C_4 C_5 C_6$	119.07	119.98	118.50
$\angle C_7 C_8 C_9$	119.59	122.04	121.17
$\angle C_{10}C_6C_5$	118.86	119.83	116.69

^a The x mark denotes the carbon that attached with proton.

Table S2 Comparison of geometric parameters of isomers of $C_{10}H_9$ predicted with B3PW91/6-311++G(2d,2p). The atomic numbering is according to Fig. S1. The unit of Bond lengths is Å and the unit of angles is degree.

C ₁₀ H ₉ geometry	$1 - C_{10}H_9$	$2-C_{10}H_9$	$4a-C_{10}H_9$
$r(C_1C_2)$	1.496	1.493	1.348
$r(C_2C_3)$	1.366	1.499	1.432
$r(C_3C_4)$	1.403	1.340	1.376
$r(C_4C_5)$	1.432	1.451	1.403
$r(C_5C_6)$	1.417	1.438	1.511
$r(C_1C_6)$	1.454	1.395	1.499
$r(C_7C_8)$	1.382	1.391	1.376
$r(C_8C_9)$	1.396	1.404	1.432

$r(C_6C_{10})$	1.391	1.424	1.499
$r(C_1H_{11})$	1.100	1.083	1.084
$r(C_3H_{13})$	1.083	1.083	1.082
$r(C_8H_{16})$	1.082	1.081	1.082
$r(C_{10}H_{18})$	1.084	1.082	1.084
$r(C_{x}H_{19})^{a}$	1.100	1.101	1.120
$\angle H_{11}C_1H_{19}$	103.95		
$\angle H_{12}C_2H_{19}$		103.27	
$\angle C_5 C_6 H_{19}$			104.48
$\angle C_1 C_2 C_3$	122.07	113.55	121.08
$\angle C_2 C_3 C_4$	121.82	122.53	120.33
$\angle C_4 C_5 C_6$	119.95	118.45	118.51
$\angle C_7 C_8 C_9$	119.84	119.70	120.33
$\angle C_{10}C_6C_5$	119.21	117.88	113.27

^a The x mark denotes the carbon that attached with proton.

Table S3 Comparison of geometric parameters of transition states predicted with B3PW91/6-311++G(2d,2p). The atomic numbering is according to Fig. S2 and the corresponding potential energy surfaces are shown in Fig. S3. The unit of Bond lengths is Å and the unit of angles is degree.

TS	ፐና ለ	тер	TSC	TSD
geometry	ISA	150	150	13D
$r(C_1C_2)$	1.429	1.381	1.491	1.382
$r(C_2C_3)$	1.423	1.398	1.422	1.461
$r(C_3C_4)$	1.364	1.382	1.361	1.363
$r(C_4C_5)$	1.423	1.401	1.453	1.438
$r(C_5C_6)$	1.428	1.454	1.426	1.453
$r(C_1C_6)$	1.422	1.472	1.438	1.460
$r(C_7C_8)$	1.375	1.367	1.396	1.394
$r(C_8C_9)$	1.406	1.421	1.386	1.400
$r(C_6C_{10})$	1.405	1.440	1.399	1.436
$r(C_1H_{11})$	1.084	1.083	1.080	1.083
$r(C_3H_{13})$	1.081	1.082	1.083	1.083
$r(C_8H_{16})$	1.082	1.082	1.082	1.081
$r(C_{10}H_{18})$	1.083	1.083	1.084	1.083
$r(C_1H_{19})$	1.338	1.430	1.331	1.483
$\angle H_{11}C_1H_{19}$	103.87	105.29	107.24	102.76
$\angle C_1 C_2 C_3$	119.90	120.41	118.09	118.59
$\angle C_2 C_3 C_4$	119.32	121.18	121.40	121.92
$\angle C_4 C_5 C_6$	119.63	118.78	119.27	117.32
$\angle C_7 C_8 C_9$	120.91	121.35	119.59	119.31
$\angle C_{10}C_6C_5$	120.18	119.46	118.87	117.67

mode		$1-C_{10}I$	H9 ⁺	2-C ₁	$_{0}H_{9}^{+}$
mode	sym -	Harmonic	Anharmonic	Harmonic	Anharmonic
ν_1	A'	3221 (1)	3102	3221 (1)	3097
v_2	A'	3220 (2)	3087	3213 (1)	3086
v_3	A'	3206 (0)	3090	3210(1)	3095
ν_4	A'	3200 (0)	3079	3201 (0)	3084
v_5	A'	3194 (2)	3076	3197 (1)	3076
ν_6	A'	3192 (0)	3049	3195 (0)	3065
v_7	A'	3182 (0)	3032	3185 (1)	3072
ν_8	A'	2992 (31)	2850	2978 (62)	2841
v 9	A'	1663 (86)	1625	1669 (236)	1627
ν_{10}	A'	1617 (67)	1571	1646 (25)	1610
ν_{11}	A'	1594 (12)	1558	1584 (5)	1563
v_{12}	A'	1550 (231)	1515	1541 (31)	1507
v_{13}	A'	1495 (127)	1458	1511 (116)	1471
ν_{14}	A'	1475 (1)	1449	1470 (2)	1440
v_{15}	A'	1451 (30)	1420	1435 (12)	1405
ν_{16}	A'	1405 (81)	1365	1432 (98)	1402
ν_{17}	A'	1382 (17)	1346	1383 (32)	1335
ν_{18}	A'	1333 (105)	1286	1319 (50)	1289
V19	A'	1300 (22)	1278	1302 (131)	1268
v_{20}	A'	1269 (24)	1252	1271 (5)	1249
v_{21}	A'	1219 (8)	1201	1240 (5)	1218
v_{22}	A'	1197 (10)	1182	1200 (17)	1185
v_{23}	A'	1188 (30)	1170	1182 (20)	1167
v_{24}	A'	1157 (7)	1141	1163 (5)	1148
v_{25}	A'	1115 (8)	1099	1051 (15)	1025
v_{26}	A'	1053 (2)	1037	1043 (3)	1025
v_{27}	A'	978 (14)	963	941 (7)	930
v_{28}	A'	929 (1)	920	937 (21)	926
V29	A'	800 (0)	791	785 (5)	778
v_{30}	A'	755 (4)	745	753 (4)	745

Table S4 Vibrational wavenumbers (cm⁻¹) and intensities (km mol⁻¹) of $1-C_{10}H_9^+$ and $2-C_{10}H_9^+$ predicted with B3PW91/6-311++G(2d,2p).

v_{31}	A'	608 (2)	603	615 (2)	609
v_{32}	A'	503 (8)	496	509 (1)	502
v_{33}	A'	502 (8)	497	501 (4)	496
v_{34}	A'	355 (1)	352	360 (2)	358
V35	A''	3002 (11)	2844	2980 (14)	2824
v_{36}	A''	1175 (1)	1138	1159 (0)	1120
v_{37}	A''	1044 (0)	1018	1041 (1)	1019
ν_{38}	A''	1036 (0)	1016	1025 (1)	1001
ν_{39}	A''	1022 (5)	1000	1012 (3)	992
v_{40}	A''	997 (0)	977	958 (17)	937
v_{41}	A''	928 (1)	904	914 (10)	891
v_{42}	A''	860 (7)	840	817 (17)	796
v_{43}	A''	788 (54)	773	801 (1)	778
v_{44}	A''	745 (28)	726	784 (44)	768
v_{45}	A''	673 (0)	653	672 (2)	653
v_{46}	A''	488 (0)	472	485 (22)	471
v_{47}	A''	432 (13)	423	447 (3)	434
ν_{48}	A''	402 (0)	393	375 (1)	365
v_{49}	A''	246 (13)	245	265 (2)	264
v_{50}	A''	171 (1)	169	167 (1)	163
v_{51}	A''	117 (0)	119	134 (6)	135

mode	1-C ₁₀ H ₉		₀ H ₉	2-C ₁₀ H ₉		
mode	sym –	Harmonic	Anharmonic	Harmonic	Anharmonic	
ν_1	A'	3201 (14)	3054	3202 (16)	3069	
ν_2	A'	3197 (23)	3074	3187 (23)	3062	
v_3	A'	3187 (28)	3061	3182 (23)	3048	
ν_4	A'	3186 (6)	3067	3174 (8)	3050	
v_5	A'	3172 (1)	3048	3171 (10)	3047	
ν_6	A'	3168 (4)	3023	3168 (5)	3043	
v_7	A'	3163 (9)	3048	3160 (3)	2988	
ν_8	A'	2974 (26)	2865	2947 (50)	2844	
v 9	A'	1638 (0)	1597	1682 (0)	1639	
ν_{10}	A'	1609 (0)	1555	1611 (0)	1564	
v_{11}	A'	1565 (2)	1523	1571 (2)	1533	
v_{12}	A'	1522 (8)	1488	1509 (5)	1475	
v_{13}	A'	1477 (7)	1448	1463 (4)	1434	
ν_{14}	A'	1444 (0)	1410	1449 (3)	1420	
v_{15}	A'	1438 (11)	1409	1436 (6)	1407	
v_{16}	A'	1396 (1)	1363	1415 (3)	1386	
v_{17}	A'	1366 (0)	1337	1365 (5)	1327	
ν_{18}	A'	1324 (5)	1294	1355 (0)	1326	
V19	A'	1279 (3)	1255	1295 (5)	1274	
v_{20}	A'	1235 (1)	1213	1250 (1)	1225	
v_{21}	A'	1206 (2)	1182	1205 (0)	1184	
v_{22}	A'	1176 (0)	1163	1176 (0)	1161	
v_{23}	A'	1173 (0)	1157	1162 (1)	1147	
v_{24}	A'	1140 (2)	1127	1140 (2)	1121	
v_{25}	A'	1094 (2)	1079	1056 (3)	1040	
v_{26}	A'	1060 (3)	1042	1041 (4)	1024	
V ₂₇	A'	960 (11)	945	929 (1)	910	
v_{28}	A'	924 (0)	913	908 (17)	894	
V29	A'	795 (1)	784	785 (1)	771	
v_{30}	A'	752 (0)	743	755 (0)	744	

Table S5 Vibrational wavenumbers (cm⁻¹) and intensities (km mol⁻¹) of $1-C_{10}H_9$ and $2-C_{10}H_9$ predicted with B3PW91/6-311++G(2d,2p).

ν_{31}	A'	609 (1)	603	611 (2)	604
v_{32}	A'	505 (1)	497	504 (0)	498
v_{33}	A'	486 (0)	480	497 (1)	483
v_{34}	A'	356 (1)	354	355 (1)	353
v_{35}	A''	2979 (10)	2817	2939 (13)	2773
v_{36}	A''	1199 (1)	1173	1183 (1)	1154
v_{37}	A''	990 (0)	982	996 (1)	974
ν_{38}	A''	966 (0)	951	978 (0)	970
v_{39}	A''	964 (2)	946	948 (7)	937
ν_{40}	A''	929 (2)	915	923 (9)	904
ν_{41}	A''	871 (1)	857	864 (0)	854
v_{42}	A''	793 (19)	781	790 (17)	773
v_{43}	A''	750 (56)	742	759 (75)	749
v_{44}	A''	714 (10)	700	700 (0)	686
v_{45}	A''	658 (28)	649	685 (1)	673
v_{46}	A''	540 (1)	533	543 (6)	530
v_{47}	A''	469 (2)	464	456 (18)	448
v_{48}	A''	427 (8)	420	392 (0)	385
v_{49}	A''	249 (6)	249	255 (0)	247
v_{50}	A''	170 (1)	167	171 (2)	166
v_{51}	A''	83 (0)	92	122 (1)	121

mode		4a-C ₁₀	₉ H ₉ ⁺	4a-C ₁₀ H ₉		
mode	sym -	Harmonic	Anharmonic	Harmonic	Anharmonic	
ν_1	A'	3219 (0)	3072	3202 (2)	3063	
ν_2	A'	3210 (2)	3070	3188 (37)	3034	
v_3	A'	3200 (0)	3054	3171 (3)	3043	
ν_4	A'	3196 (1)	3017	3167 (10)	3006	
v_5	A'	2747 (51)	2548	2718 (20)	2526	
ν_6	A'	1652 (35)	1621	1636 (1)	1592	
v_7	A'	1593 (14)	1564	1521 (1)	1481	
ν_8	A'	1488 (0)	1467	1473 (0)	1441	
V 9	A'	1428 (18)	1433	1404 (1)	1371	
v_{10}	A'	1389 (0)	1365	1351 (0)	1317	
v_{11}	A'	1266 (11)	1240	1263 (10)	1230	
v_{12}	A'	1194 (2)	1185	1170 (0)	1146	
v_{13}	A'	1148 (0)	1140	1157 (1)	1143	
v_{14}	A'	1043 (2)	1107	1076 (10)	1052	
v_{15}	A'	1029 (1)	1018	1004 (0)	990	
ν_{16}	A'	1020 (2)	917	974 (2)	954	
ν_{17}	A'	921 (13)	853	955 (5)	935	
v_{18}	A'	902 (25)	584	871 (3)	853	
V19	A'	807 (73)	993	794 (30)	778	
v_{20}	A'	783 (4)	786	772 (22)	760	
v_{21}	A'	717 (2)	710	708 (65)	699	
v_{22}	A'	705 (34)	515	670 (1)	664	
v_{23}	A'	508 (1)	506	513 (3)	507	
v_{24}	A'	463 (15)	367	466 (14)	456	
v_{25}	A'	424 (2)	556	438 (5)	433	
v_{26}	A'	342 (0)	358	323 (0)	322	
V27	A'	155 (2)	190	151 (1)	150	
v_{28}	A''	3219 (5)	3073	3201 (25)	3063	
V29	A''	3209 (0)	3068	3187 (4)	3035	

Table S6 Vibrational wavenumbers (cm⁻¹) and intensities (km mol⁻¹) of $4a-C_{10}H_9^+$ and $4a-C_{10}H_9$ predicted with B3PW91/6-311++G(2d,2p).

v_{30}	Α"	3199 (0)	3052	3169 (5)	3044
v_{31}	A''	3195 (0)	3005	3164 (1)	3027
v_{32}	A''	1667 (54)	1611	1636 (0)	1589
V ₃₃	A''	1537 (14)	1494	1512 (3)	1478
v_{34}	A''	1476 (190)	1427	1421 (3)	1391
V ₃₅	A''	1433 (178)	1399	1340 (2)	1312
v_{36}	A''	1275 (16)	1264	1258 (0)	1235
v_{37}	A''	1204 (27)	1187	1202 (7)	1173
ν_{38}	A''	1198 (0)	1148	1180 (0)	1161
v_{39}	A''	1175 (9)	1125	1111 (11)	1093
v_{40}	A''	1040 (0)	1051	1074 (1)	1051
ν_{41}	A''	1024 (0)	1059	1003 (11)	995
v_{42}	A''	1016 (2)	986	971 (1)	950
v_{43}	A''	930 (7)	907	929 (0)	911
v_{44}	A''	908 (25)	796	920 (3)	905
v_{45}	A''	828 (31)	823	781 (0)	767
v_{46}	A''	706 (28)	659	677 (14)	664
v_{47}	A''	609 (2)	613	605 (1)	600
v_{48}	A''	546 (0)	682	564 (0)	554
v_{49}	A''	490 (9)	469	469 (3)	464
v_{50}	A''	335 (0)	540	350 (1)	338
ν_{51}	A''	152 (0)	137	115 (0)	109

Fig. S1 Atomic numbering of (A)1- $C_{10}H_9^+$ and 1- $C_{10}H_9$, (B) 2- $C_{10}H_9^+$ and 2- $C_{10}H_9$, (C) 4a- $C_{10}H_9^+$ and 4a- $C_{10}H_9$.

Fig. S2 Atomic numbering for (A) TSA and TSC, (B) TSB and TSD.

Fig. S3 Potential energy surfaces of isomerization of (A) $C_{10}H_9^+$ and (B) $C_{10}H_9$.