Supporting Information

SERS-based immunoassay of tumor marker VEGF using DNA aptamers and silica-encapsulated hollow gold nanospheres

Juhui Ko,^a Sangyeop Lee,^a Eun Kyu Lee,^b Soo-Ik Chang,^c Lingxin Chen,^d Soo-Young Yoon,^{e,*} and Jaebum Choo^{a,*}

^aDepartment of Bionano Engineering, Hanyang University, Ansan 426-791, South Korea,

^bCollege of Bionanotechnology, Gacheon University, Sungnam 461-701, South Korea,

- ^cDepartment of Biochemistry, Chungbuk National University, Cheongjoo 361-763, South Korea
- ^dKey Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- ^eDepartment of Laboratory Medicine, Korea University College of Medicine, Ansan 425-707, South Korea

Submitted to

Physical Chemistry Chemical Physics

November 2012 (Revised)

Type of Manuscript: Research Paper

(Special Issue on "Plasmonics and Spectroscopy")

*Joint corresponding authors

Address for correspondence:

Jaebum Choo

Telephone: +82-31-400-5201; Fax: +82-31-436-8188; E-mail: jbchoo@hanyang.ac.kr

Fig. S1 SERS spectra for decreasing concentrations of XRICT adsorbed on HGNs: (i) 500 nM, (ii) 200 nM, (iii) 100 nM, (iv) 50 nM, (v) 20 nM, and (vi) Raman spectrum of 2.0 μ M of free XRITC solution.

Fig. S2 Evaluation of the loading density of (a) Cy3-labeled aptamer DNA-conjugated SEHGNs, (b) fluorescence emission spectra for decreasing concentrations of sulfo-SMCC: (i) 5 μ M, (ii) 1 μ M, (iii) 0.5 μ M, (iv) 0.1 μ M, and (v) 0 μ M, and (c) the corresponding fluorescence intensity change at 585 nm. Error bars indicate standard deviations from 5 measurements.

Fig. S3 Calibration curve of the SERS signal at 1650 cm⁻¹ as a function of VEGF concentration in the higher concentration range from 0.1 to 1000 ng/mL.