Tri-metallic deltahedral Zintl ions: A theoretical survey of the series $[Sn_{9-m-n}Ge_mBi_n]^{(4-n)-}$ for n = 1 - 4 and m = 0 - (9-n). Prediction and rationalization of their possible structures.

Alvaro Muñoz-Castro^a and Slavi S. Sevov^b

^aDepartamento de Ciencias Quimicas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile.

^bDepartament of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.

Figure S1. Natural Charge distribution in both $[Ge_9]^{4-}$ and $[Sn_9]^{4-}$ displaying $C_{4\nu}$ and D_{3h} structures.

Figure S2. Global minimum structure for $[Sn_6Ge_3]^{4-}$.

Figure S3. Low-energy isomers of the series $[Sn_{8-m}Ge_mBi_1]^{3-}$ for m = 0 - 8. The difference in energy (kcal/mol) from the global minimum is given in parenthesis.

Figure S4. Low-energy isomers of the series $[Sn_{7-m}Ge_mBi_2]^{2-}$ for m = 0 - 7. The difference in energy (kcal/mol) from the global minimum is given in parenthesis.

Figure S5. Low-energy isomers of the series $[Sn_{6-m}Ge_mBi_3]^{1-}$ for m = 0 - 6. The difference in energy (kcal/mol) from the global minimum is given in parenthesis.

Figure S6. Low-energy isomers of the series $[Sn_{5-m}Ge_mBi_4]$ for m = 0 - 5. The difference in energy (kcal/mol) from the global minimum is given in parenthesis.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

SUPPORTING INFORMATION

Table S1.Total bonding energies (TBE) for the global minima of the Sn-Ge-Bitrimetallic deltahedral Zintl ions with various stoichiometries.

Composition	TBE (eV) ^a		
composition			
[Ge ₈ Bi] ³⁻	-24 5671		
[SnGe ₇ Bi] ³⁻	-24.0916		
$[Sn_2Ge_6Bi]^3$	-23.6624		
[Sn ₃ Ge ₅ Bi] ³⁻	-23.1884		
$[Sn_4Ge_4Bi]^{3-1}$	-22.7652		
[Sn ₅ Ge ₃ Bi] ³⁻	-22.2569		
$[Sn_6Ge_2Bi]^{3-}$	-21.8156		
[Sn ₇ GeBi] ³⁻	-21.3653		
[Sn ₈ Bi] ³⁻	-20.8604		
$[Ge_7Bi_2]^{2-}$	-27.9900		
[SnGe ₆ Bi ₂] ²⁻	-27.4557		
$[Sn_2Ge_5Bi_2]^{2}$	-26.9466		
$[Sn_3Ge_4Bi_2]^{2}$	-26.4894		
$[Sn_4Ge_3Bi_2]^{2-}$	-25.9587		
$[Sn_5Ge_2Bi_2]^{2-}$	-25.4537		
$[Sn_6Ge_1Bi_2]^{2-}$	-25.0252		
$[Sn_7Bi_2]^{2-}$	-24.4361		
$[Ge_6Bi_3]^-$	-27.8418		
[SnGe ₅ Bi ₃] ⁻	-27.3292		
$[Sn_2Ge_4Bi_3]^-$	-26.8592		
$[Sn_3Ge_3Bi_3]^-$	-26.2902		
$[Sn_4Ge_2Bi_3]^-$	-25.5336		
[Sn ₅ GeBi ₃] ⁻	-25.2701		
$[Sn_6Bi_3]^-$	-24.7807		
[Ge ₅ Bi ₄]	-23.9934		
[SnGe ₄ Bi ₄]	-23.7368		
[Sn ₂ Ge ₃ Bi ₄]	-23.0077		
[Sn ₃ Ge ₂ Bi ₄]	-22.5404		
[Sn ₄ GeBi ₄]	-22.0813		
[Sn ₅ Bi ₄]	-21.4782		

^aCorrected values according to V. Branchadell, M. Sodupe, *Chem.Phys.Lett.* **1997**, 265, 481. These values indicate that the inclusion of Sn nuclei decrease the bonding energy in each series.

Table S2. Results from the *Continuos-Shape-Measure* (CShM) calculations. Each number represents the deviation of a given nine-atom deltahedral Zintl ion from a perfect *msa* or *ttp* polyhedron. Smaller deviation (denoted in bold) indicates better fit with the corresponding shape. Deviations of around 0.5 and 1.5 indicate intermediate situation.

Composition	CShM	CShM	φ	Symmetry
_	msa	ttp		
[Ge ₈ Bi] ³⁻	1.192	0.832	0.10	$\sim D_{3h}$
[SnGe7Bi]3-	0.704	1.030	1.00	C_{4v}
$[Sn_2Ge_6Bi]^{3-}$	0.478	1.455	0.50	$\sim C_{2v}$
[Sn ₃ Ge ₅ Bi] ³⁻	1.205	0.870	0.05	D_{3h}
[Sn ₄ Ge ₄ Bi] ³⁻	1.306	0.904	0.06	D_{3h}
[Sn ₅ Ge ₃ Bi] ³⁻	1.089	0.706	0.01	D_{3h}
$[Sn_6Ge_2Bi]^{3-}$	0.840	0.594	0.06	D_{3h}
[Sn ₇ GeBi] ³⁻	0.332	0.902	0.97	C_{4v}
[Sn ₈ Bi] ³⁻	0.924	0.581	0.23	$\sim D_{3h}$
$[Ge_7Bi_2]^{2-}$	0.564	1.597	0.40	$\sim C_{2v}$
$[SnGe_6Bi_2]^{2}$	0.618	1.627	0.71	$\sim C_{2v}$
$[Sn_2Ge_5Bi_2]^{2-}$	0.458	1.409	0.89	$\sim C_{4v}$
$[Sn_3Ge_4Bi_2]^{2-}$	0.458	1.409	0.49	$\sim C_{2v}$
$[Sn_4Ge_3Bi_2]^{2-}$	0.569	1.388	1.00	C_{4v}
$[Sn_5Ge_2Bi_2]^{2-}$	0.394	1.281	0.96	C_{4v}
$[Sn_6Ge_1Bi_2]^{2-}$	0.234	1.148	0.98	C_{4v}
$[Sn_7Bi_2]^{2-}$	0.247	1.042	0.99	C_{4v}
[Ge ₆ Bi ₃] ⁻	0.722	1.691	0.96	C_{4v}
[SnGe ₅ Bi ₃] ⁻	0.677	1.674	0.47	$\sim C_{2\nu}$
[Sn ₂ Ge ₄ Bi ₃] ⁻	0.626	1.677	0.59	$\sim C_{2\nu}$
[Sn ₃ Ge ₃ Bi ₃] ⁻	0.640	1.657	0.68	$\sim C_{2v}$
$[Sn_4Ge_2Bi_3]^-$	0.219	0.657	0.81	$\sim C_{4v}$
[Sn ₅ GeBi ₃] ⁻	0.312	0.422	0.96	C_{4v}
$[Sn_6Bi_3]^-$	1.062	0.064	0.00	D_{3h}
[Ge ₅ Bi ₄]	0.691	1.799	0.93	C_{4v}
[SnGe ₄ Bi ₄]	0.700	1.808	0.96	C_{4v}
[Sn ₂ Ge ₃ Bi ₄]	0.516	1.656	0.49	$\sim C_{2v}$
[Sn ₃ Ge ₂ Bi ₄]	0.382	1.554	0.97	C_{4v}
[Sn ₄ GeBi ₄]	0.247	1.435	1.00	C_{4v}
[Sn ₅ Bi ₄]	0.174	0.830	0.58	~ <i>C</i> _{2v}