Pd Nanocrystals on WC as a Synergistic Electrocatalyst for Hydrogen Oxidation Reactions

Hee-Young Park,^{*a,b} In-Su Park*,^{*a*} Baeck Choi,^{*a*} Kug-Sung Lee,^{*a*} Tae-Yeol Jeon,^{*a*} Yung-Eun Sung, *^{*a*} and Sung Jong Yoo*^{*b*}</sup>

^a World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical & Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea.

^b Fuel Cell Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul 136-791, Republic of Korea.

*Address correspondence to this author. E-mail: <u>ysj@kist.re.kr</u> and <u>ysung@snu.ac.kr</u>

Determination of exchange current

The exchange current density was calculated form a current-potential profile of Butler-Volmer equation,

 $I = i_0 [exp(-\alpha \eta F/RT) - exp((1-\alpha)\eta F/RT)]$

where, η is overpotential and T is temperature.

For small overpotential, the equation becomes,

 $i = i_0 \eta F/RT$

Thus, we can obtain the exchange current, i_0 , form the $i_k RT/(F\eta)$.

Figure S1. TEM image of Pd/C-200.

Figure S2. X-ray diffraction of Pd/C-200.

Figure S3. The Pd 3d XPS spectra of (a) Pd/C, (b) Pd/WC-AP, (c) Pd/WC-200, (d) Pd/WC-400, and (e) Pd/WC-600.

Figure S4. Current-time profiles of HOR on Pd/WC-AP. Reaction temperatures were denoted in the graph. At each temperature, the current-time profiles represent that of 2000 rpm, 1500 rpm, 1000 rpm and 500 rpm, in turn from top to bottom, respectively.

Figure S5. Current-time profiles of HOR on Pd/C-200. Reaction temperatures were denoted in the graph. At each temperature, the current-time profiles represent that of 2000 rpm, 1500 rpm, 1000 rpm and 500 rpm, in turn from top to bottom, respectively.

Figure S6. Current-time profiles of HOR on Pd/WC-200. Reaction temperatures were denoted in the graph. At each temperature, the current-time profiles represent that of 2000 rpm, 1500 rpm, 1000 rpm and 500 rpm, in turn from top to bottom, respectively.

Figure S7. Current-time profiles of HOR on Pd/WC-400. Reaction temperatures were denoted in the graph. At each temperature, the current-time profiles represent that of 2000 rpm, 1500 rpm, 1000 rpm and 500 rpm, in turn from top to bottom, respectively.

Figure S8. Current-time profiles of HOR on Pd/WC-600. Reaction temperatures were denoted in the graph. At each temperature, the current-time profiles represent that of 2000 rpm, 1500 rpm, 1000 rpm and 500 rpm, in turn from top to bottom, respectively.

Samples	BE (eV) of Pd(0)	XPS area ratio (%)			
		Pd(0)	Pd(II)	Pd(IV)	
Pd/C-200	335.2	37.9	62.1	0	
Pd/WC-AP	335.2	31.3	51.7	17.0	
Pd/WC-200	335.3	47.6	37.1	15.3	
Pd/WC-400	335.4	55.3	28.5	16.2	
Pd/WC-600	335.8	60.7	12.4	26.9	

C 1	BE (eV)			XPS area ratio (%)		
Samples	W(0)	W(IV)	W(VI)	W(0)	W(IV)	W(VI)
Fresh WC	29.9	30.6	33.6	55.3	25.4	19.3
WC + water	29.9	30.6	33.7	58.2	23.7	18.1
WC + water + Pd salt	29.7	30.3	33.5	46.2	21.8	31.9
$WC + water + Pd salt + NaBH_4$	29.9	30.5	34.0	36.2	17.7	46.1

Table S2. W 5f XPS spectra in fresh WC, WC mixing with DI water for 12 hrs, WC mixing with Pd salt for 12 hrs, and WC mixing with Pd salt + NaBH₄ for 12 hrs.

Table S3. Area ratios of W 5f XPS spectra in (a) fresh WC (b) mixing with DI water for 12 hrs (c) mixing with Pd salt and stirred for 12 hrs (d) Pd/WC-AP

samples	(a)	(b)	(c)	(d)
[W(IV)+W(VI)]/W _{total}	0.44	0.42	0.54	0.64