
Appendix A:  Spherical particle within an oscillating electric field 

 

First consider the electric dipole developed by a spherical particle placed within in a uniform, 

oscillating electric field, and the subsequent electric dipole absorption. Electromagnetic 

scattering can be neglected if the sphere is electrically small, in which limit the 

electromagnetic fields are considered to be quasi-static; specifically, this occurs for a particle 

radius 0a , where  /20 c  is the free space wavelength and  the angular frequency 

of the applied electric field.  

 

Referring to the spherical polar co-ordinate system of Fig. A1, consider a uniform electric 

field of magnitude 0E  applied parallel to the z-axis. The sphere is considered to have 

isotropic relative permittivity  and permeability , which can be complex quantities to allow 

for energy absorption.  

 

 

Figure A1:  The spherical polar co-ordinate system used to solve the electromagnetic fields 

in and around a material sphere. 
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The quasi-static electric and magnetic field fields inside the sphere are of the form 

  tj
r eEEE 

  0,sin,cos  and   tjeHH 
  sin,0,0 , where EEr ,  and H  are scalar 

functions of radial position r only, and are proportional to the applied electric field magnitude 

0E . This results in an electric dipole moment parallel to the applied electric field. 

Helmholtz’s equation for the induced magnetic field within the sphere is then 
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where krx  . The wavenumber k is defined (in the usual manner) using ck / . The 

unique solution of Eqn.(A1) which remains finite as 0x  has the Bessel function form 
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where the magnetic field scaling factor 1H  is independent of radial position r. The 

corresponding electric field components within the sphere can now be calculated from 

Maxwell’s displacement current density, i.e. EjH 0 , resulting in 
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where the position-independent electric field scaling factor is  011 /2  jkHE .  
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Outside of the sphere, the electric field is that of the original field (of magnitude 0E ), 

perturbed by the dipole field associated with the presence of the sphere. The external electric 

field is again of the form   tj
r eEEE 

  0,sin,cos , and in terms of the sphere’s induced 

electric dipole moment p 
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Applying the electric field boundary conditions at the sphere’s surface for the field 

components of Eqns. (A2) and (A3) allows the electric dipole moment to be found, with the 

end result being 
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In the low frequency limit (i.e. 1ka ), Eqn.(A4) reduces to the familiar result of the static 

electric dipole moment of a uniformly polarised dielectric sphere, namely  
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Appendix B:  Spherical particle within an oscillating magnetic field 

 

Now consider the magnetic dipole developed by a spherical particle placed within a uniform, 

oscillating magnetic field, which can be developed in analogy with the treatment of the 

particle’s electric dipole moment discussed in Appendix A. Assume that the sphere is again 

electrically small (i.e. 0a ) and has complex, isotropic relative permittivity  and 

permeability . A uniform, oscillating magnetic field of magnitude 0H  applied parallel to the 

z-axis generates a magnetic dipole moment which is also parallel to the z-axis. The resulting 

electric and magnetic fields are then   tj
r eHHH 

  0,sin,cos  and 

  tjeEE 
  sin,0,0 , respectively. By the reduction of Helmholtz’s equation applied to the 

azimuthal electric field component, it is found that E  satisfies  
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which has the unique solution  
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which remains finite as 0x , where again krx   and ck / . The field scaling 

factor now is 2E , which differs from 1E  encountered in the treatment of the electric dipole 

moment. The corresponding magnetic field components can be generated using Faraday’s 

law HjE 0 , resulting in 

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013



 

    










  x

x

x

x

x

x

H
xH

x

xxx
HxHr sin

sincos

2
,

cossin
2

2
32           (B1) 

 

where the magnetic field scaling factor is defined by 022 /2  kjEH . 

 

Outside of the sphere, the magnetic field is that of the original field (of magnitude 0H ), 

perturbed by the dipole field associated with the presence of the sphere. The external 

magnetic field is again of the form   tj
r eHHH 

  0,sin,cos , and in terms of the 

sphere’s induced magnetic dipole moment m 
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Applying the magnetic field boundary conditions at the sphere’s surface for the field 

components of Eqns. (B1) and (B2) allows the magnetic dipole moment to be found, with the 

end result being    
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In the low frequency limit (i.e. 1ka ), Eqn.(B3) reduces to the familiar result of the static 

magnetic dipole moment of a uniformly magnetised sphere, namely  
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