Electronic Supplementary Information

Highly efficient SO₂ absorption/activation and subsequent utilization by polyethylene glycol-functionalized Lewis basic ionic liquids

Zhen-Zhen Yang, Liang-Nian He,* Qing-Wen Song, Kai-Hong Chen, An-Hua Liu and Xiang-Ming Liu

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China. *Corresponding author: Tel: +86-22-23503878; Fax: +86-22-23503878; E-mail: heln@nankai.edu.cn Homepage: http://www.nankaichemhe.com/

Table of Contents

Page
S2
S2
S17
S23
S30
S31
S46
]

1. General experimental methods:

Caution

Experiments using compressed gases SO_2 or CO_2 are potentially hazardous and must only be carried out by using the appropriate equipment and under rigorous safety precautions.

Materials

All the reagents used in this work are purchased from Alfa Aesar-A Johnson Matthey Company or Tianjin Guangfu Fine Chemical Research Institute, and directly used without further purification. SO_2 and CO_2 with a purity of 99.99% is commercially available. Lewis basic ionic liquids are synthesized according to the reported method.

Experimental methods

¹H NMR spectra was recorded at Bruker 400 spectrometer in CDCl₃ or d₆-DMSO and CDCl₃ (7.26 ppm) or d₆-DMSO (2.50 ppm) was used as internal reference, ¹³C NMR was recorded at 100.6 MHz in CDCl₃ or d₆-DMSO and CDCl₃ (77.00 ppm) or d₆-DMSO (39.43 ppm) was used as internal reference. ESI-MS were recorded on a Thermo Finnigan LCQ Advantage spectrometer in ESI mode with a spray voltage of 4.8 kV. GC-MS were measured on a Finnigan HP G1800 A. GC analyses were performed on a Shimadzu GC-2014 equipped with a capillary column (RTX-WAX, 30 m * 0.25 μ m) using a flame ionization detector. *In situ* FTIR was collected on a Mettler Toledo React IR ic10, Silica ATR probe, using ic IR analysis system. The probe is placed in the middle of the absorption mixture, which is constantly stirred by magnetic whisk, and the spectra are collected *in situ* during SO₂ absorption. Column chromatography was performed by using silica gel 200-300 mesh with CH₂Cl₂/ethyl acetate/petroleum as eluent. Melting points were measured on an X₄ apparatus and uncorrected.

General procedure for absorption and desorption of $\ensuremath{SO_2}$

In a typical procedure, SO_2 capture was carried out in a 10 mL Schlenk flask. The absorbents were charged into the reactor at room temperature. Then, the air in the flask was replaced by SO_2 and a needle was used for SO_2 bubbling, which was inserted in the bottom of the flask. The absorption reaction was conducted at 25 °C with a SO_2 bubbling rate of 0.1 L/min. The amount of SO_2 absorbed was determined by an Analytical Balance within an accuracy of ± 0.0001 g every five minutes. During the absorption of SO_2 under reduced pressure, SO_2 is diluted with N2 in order to reduce the partial pressure of SO_2 passing through the system. The SO_2 partial pressure is controlled by changing the volume fraction of SO_2 . In a typical desorption of SO_2 , N₂ of atmospheric pressure is bubbled trough absorption system at 25 °C using the same equipment and procedure as SO_2 capture. Absorption/desorption is determined by several cycles of repeated experiments.

General procedure for the reaction of epoxides and SO₂

A typical procedure is as follows: $PEG_{150}MeDABCOBr$ (3 mol%), biphenyl (0.05 g, internal standard of GC) and propylene oxide (10 mmol) were added successively into a glass tube. The suspension was cooled to -60 °C (liquid nitrogen/ethanol) and SO₂ (10 mmol) was introduced into the vessel. The glass tube was placed in a stainless steel autoclave (25 mL inner volume). The reaction mixture was heated at 120 °C with stirring for 3 h. After reaction, the autoclave was allowed to be cooled at 0 °C. The product yields for catalyst and reaction parameters screening were determined by GC with a flame ionization detector and were further identified using GC-MS by comparing retention times and fragmentation patterns with authentic samples. For substrate scope, the desired products are purified column chromatography on silica gel (200-300 mesh, eluting with petroleum ether/ethyl acetate or petroleum ether/dichloromethane), and further identified by GC-MS and NMR, which are consistent with those reported in the literature¹ and in good agreement with the assigned structures.

2. Synthesis and characterization of DABCO-derived Lewis basic ionic liquids

PEG₁₅₀MeCl²

A solution of thionyl chloride (0.45 mol) in CHCl₃ (90 mL) is added slowly over 60 min to a stirred solution of triethylene glycol monomethyl ether (0.3 mol) and pyridine (0.3 mol) in CHCl₃ (200 mL), followed by refluxing the above reaction mixture at 100 °C for 4 h, and then yellow is obtained, which is washed with water (4 * 125 mL), dried with MgSO₄, and concentrated under reduced pressure at 60 °C to remove CHCl₃. The crude product is purified under reduced pressure to give CIPEG₁₅₀Me as a light yellow liquid.

¹H NMR (CDCl₃, 400 MHz) δ 3.75 (t, ³*J* = 6 Hz, 2H), 3.61-3.69 (m, 8H), 3.53-3.56 (m, 2H), 3.37 (s, 3H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 71.8, 71.3, 70.6, 70.5, 59.0, 42.7; GC-MS: m/z (%):183.02 (100), 185.03 (33) [M⁺], 151.08 (26), 153.07 (8) [M⁺-CH₃O], 103.13 (61) [M⁺-C₂H₄OCl].

Carbon tetrabromide (24 mmol) was added to 100 mL CH_2Cl_2 solution of triethylene glycol monomethyl ether (20 mmol) under argon atmosphere. Reaction mixture was cooled to 0 °C and PPh₃ (30 mmol) in CH_2Cl_2 (20 mL) was added dropwise to it. After stirring for 12 h, the solvent from the reaction mixture was evaporated out. Diethyl ether (50 mL) was added, stirred for 5 min and filtered. The same process (addition of diethyl ether, filtration and evaporation of solvent) was repeated twice. The crude product was purified under reduced pressure to give PEG₁₅₀MeBr as a colorless liquid.

¹H NMR (CDCl₃, 400 MHz) δ 3.83 (t, ³*J* = 6.4 Hz, 2H), 3.65-3.68 (m, 6H), 3.55 (t, ³*J* = 4.8 Hz, 2H), 3.47 (t, ³*J* = 6.4 Hz, 2H), 3.38 (s, 3H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 71.9, 71.2, 70.6, 70.5, 59.0, 30.2; ESI-MS calcd for C₇H₁₅BrO₃ 226.02, found 227.0, 229.0 [M+H]⁺, 249.1, 251.1 [M+Na]⁺.

Synthesis of PEG₁₅₀MeI^{4, 5}

Triethylene glycol monomethyl ether (20 mmol) and triethylamine (30 mmol) were dissolved in dry dichloromethane (50 mL) and the solution was cooled to 0 °C. A solution of tosyl chloride (20 mmol) in dichloromethane (20 mL) was then added dropwise. The mixture was stirred for 2 h at 0 °C and 8 h at room temperature. After addition of diethyl ether (50 mL) the resulting precipitate was filtered and the filtrate concentrated to dryness. The crude product was purified by flash column chromatography (petroleum ether : ethyl acetate 2 : 1) to afford PEG₁₅₀MeTs as a light yellow oil.

¹H NMR (CDCl₃, 400 MHz,) δ 7.76 (s, 1H), 7.74 (s, 1H), 7.32 (s, 1H), 7.30 (s, 1H), 4.12 (t, ³*J* = 4.8 Hz, 2H), 3.64 (t, ³*J* = 4.8 Hz, 2H), 3.55-3.58 (m, 6H), 3.48-3.50 (m, 2H), 3.33 (s, 3H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 144.7, 132.8, 129.7, 127.8, 71.7, 70.5, 70.37, 70.36, 69.1, 68.5, 58.9, 21.5.

 $PEG_{150}MeTs$ (13 mmol) was dissolved in acetone (50 mL), and KI (25 mmol) was added to the solution. The mixture was stirred at 40 °C for 4 days. The solvent was removed under reduced pressure, and water (10 mL) was added to the residue. The mixture was extracted with CH_2Cl_2 (4 × 50 mL), and then the combined extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified under reduced pressure to give $PEG_{150}MeI$ as a colorless liquid.

¹H NMR (CDCl₃, 400 MHz) δ 3.73 (t, ³*J* = 6.8 Hz, 2H), 3.62-3.65 (m, 6H), 3.51-3.54 (m, 2H), 3.35 (s, 3H), 3.23 (t, ³*J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 71.9, 71.8, 70.5, 70.1, 59.0, 2.8.

DABCO-based ionic liquids

HDABCOBr⁶

To a 50 mL three-neched flask was added DABCO (10 mmol). A solution of HBr(10 mmol) was then added dropwise at the temperature of < 5 °C cooled by ice bath. After addition, the ice bath was removed and the reaction mixture was stirred for further 10 h and then the solvent was evaporated. The remaining solid was dried under vacuum at 60 °C for 24 h after washing by ethyl ether for three times to afford HDABCOBr.

¹H NMR (D₂O, 400 MHz) δ 3.56 (m, 12 H); ¹³C NMR (D₂O, 100.6 MHz) δ 43.6; ESI-MS calcd for C₆H₁₃BrN₂ 192.03, found 113.20 [M-Br]⁺.

$C_n DABCOBr (n = 4, 8, 12), PEG_{150} MeDABCOX (X = Cl, Br, I), C_8 (DABCO)_2 Br_2^7$

A solution of freshly sublimed DABCO (5 mmol) in MeCN (5 mL) was prepared at r.t. under Ar in a flame dried round-bottomed flask equipped with a reflux condenser. The resulting clear, colorless solution was treated with 1-bromobutane, 1-bromoctane, 1-bromododecane,

 $PEG_{150}MeCl$, $PEG_{150}MeBr$, $PEG_{150}MeI$ (2.5 mmol), for $C_4DABCOBr$, $C_8DABCOBr$, $C_{12}DABCOBr$, $PEG_{150}MeDABCOCl$, $PEG_{150}MeDABCOI$ and 1,8-dibromoctane, $BrPEG_{150}Br$ (1.25 mmol) for $C_8(DABCO)_2Br_2$, respectively, added dropwise via syringe, and the reaction mixture was heated to 80 °C (oil bath temperature) and stirred for 22 h. After being cooled to r.t., the reaction mixture was transferred via cannula into 20 mL of Et_2O , yielding a white slurry which eventually separated into two layers. The whole was transferred to a separatory funnel, and the bottom layer was collected, washed repeatedly with Et_2O and dried under high vacuum at 60 °C for 16 h.

C₄DABCOBr

White glassy solid; Mp 36-37 °C; ¹H NMR (CDCl₃, 300 MHz) δ 3.65 (t, ³*J* = 7.2 Hz, 6 H), 3.47 (t, ³*J* = 8.4 Hz, 2 H), 3.22 (t, ³*J* = 6.6 Hz, 6 H), 1.70-1.75 (m, 2 H), 1.36-1.40 (m, 2 H), 0.94 (t, ³*J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 64.3, 52.4, 45.4, 23.9, 19.7, 13.6; ESI-MS calcd for C₁₀H₂₁N₂Br 249.19, found 169.38 [M-Br]⁺, 79.02 [M-C₁₀H₂₁N₂]⁻

C₈DABCOBr

Yellow glassy solid; ¹H NMR (CDCl₃, 400 MHz) δ 3.49 (t, ³*J* = 7.6 Hz, 6 H), 3.27 (t, ³*J* = 8.4 Hz, 2 H), 3.08 (t, ³*J* = 7.2 Hz, 6 H), 1.59 (s, 2 H), 1.06-1.15 (m, 10 H), 0.68 (t, ³*J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 64.1, 52.0, 45.0, 31.1, 28.6, 28.5, 25.9, 22.1, 21.6, 13.6; ESI-MS calcd for C₁₄H₂₉N₂Br 305.3, found 225.46 [M-Br]⁺, 79.03 [M-C₁₄H₂₉N₂]⁻.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

C₁₂DABCOBr

White solid; Mp 59-60 °C; ¹H NMR (CDCl₃, 400 MHz) δ 3.64 (s, 6 H), 3.46 (t, ³*J* = 7.6 Hz, 2 H), 3.24 (s, 6 H), 1.21-1.30 (m, 20 H), 0.84 (t, ³*J* = 5.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 64.5, 52.4, 45.3, 31.8, 29.5, 29.4, 29.3, 29.2, 29.1, 26.3, 22.6, 22.1, 14.0; ESI-MS calcd for C₁₈H₇N₂Br 338.22, found 281.82 [M-Br]⁺, 79.03 [M-C₁₈H₃₇N₂]⁻.

PEG₁₅₀MeDABCOCl

Yellow liquid; ¹H NMR (d₆-DMSO, 400 MHz) δ 3.86 (s, 2H), 3.51-3.57 (m, 6H), 3.37-3.46 (m, 10H), 3.24 (s, 3H), 3.02 (t, ³*J* = 8 Hz, 6H); ¹³C NMR (d₆-DMSO, 100.6 MHz) δ 71.3, 69.5, 69.4, 69.3, 63.0, 62.8, 58.1, 52.3, 44.6; ESI-MS (4.8 kV) C₁₃H₂₇ClN₂O₃ 294.17, found 259.4, 260.4 [M-Cl]⁺.

PEG₁₅₀MeDABCOBr

Yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 3.99 (s, 2H), 3.88 (s, 2H), 3.79 (t, ³J = 7.2 Hz, 6H), 3.65-3.67 (m, 2H), 3.56-3.59 (m, 4H), 3.48-3.50 (m, 2H), 3.32 (s, 3H), 3.20 (t, ³J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 71.8, 70.3, 70.1, 70.0, 64.1, 63.5, 58.9, 53.3, 45.4;

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is $\ensuremath{\mathbb{C}}$ The Owner Societies 2012

PEG₁₅₀MeDABCOI

Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 4.02 (s, 2H), 3.84 (s, 2H), 3.77 (t, ³*J* = 7.6 Hz, 6H), 3.68-3.70 (m, 2H), 3.59-3.62 (m, 4H), 3.50-3.52 (m, 2H), 3.34 (s, 3H), 3.21 (t, ³*J* = 7.6 Hz, 6H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 45.3, 53.4, 59.0, 63.7, 64.0, 70.0, 70.2, 70.3, 71.8; ESI-MS (4.8 kV) C₁₃H₂₇IN₂O₃ 386.11, found 259.27, 260.4 [M-I]⁺, 126.93 [M-C₁₃H₂₇N₂O₃]⁻, 512.80 [2M-C₁₃H₂₇N₂O₃]⁻, 898.47 [3M-C₁₃H₂₇N₂O₃]⁻.

$C_8(DABCO)_2Br_2$

White solid; Mp. 173-174 °C; ¹H NMR (d₆-DMSO, 400 MHz) δ 3.27 (t, ³*J* = 6.8 Hz, 12H), 3.15-3.20 (m, 4H), 3.02 (t, ³*J* = 7.6 Hz, 12H), 1.63-1.67 (m, 4H), 1.27-1.33 (m, 8H); ¹³C NMR (d₆-DMSO, 100.6 MHz) δ 63.1, 51.4, 44.6, 28.3, 25.7, 20.9; ESI-MS (4.8 kV) C₂₀H₄₀Br₂N₄ 494.16, found 168.4 [M-Br₂]²⁺/2, 415.4 [M-Br]⁺, 79.0, 81.0 [M- C₂₀H₄₀N₄]⁻.

C₈DABCOBF₄

A solution of 1-octyl-4-aza-1-azaniabicyclo[2.2.2]octane bromide ($C_8DABCOBr$) (1.63 mmol) in MeCN (1.0 mL), prepared at r.t. under Ar in a flame-dried round-bottomed flask, was transferred via cannula to a slurry of NaBF₄ (1.65 mmol) in MeCN (1.5 mL). A 0.5 mL MeCN rinse was used to ensure complete transfer. A white precipitate formed immediately and the resulting slurry was stirred at r.t. for 24 h. Filtration followed by concentration of the filtrate in vacuo yielded a colorless, viscous liquid shown to be contaminated with bromide by a positive AgNO₃ test. The crude was partitioned between CH₂Cl₂ and H₂O, and the CH₂Cl₂ layer was washed repeatedly with H₂O until the aqueous layer gave a negative AgNO₃ test. The CH₂Cl₂ extract was dried (Na₂SO₄), subjected to filtration and concentrated in vacuo. Drying under high vacuum at 60 °C for 3 d yielded 1-octyl-4-aza-1-azaniabicyclo[2.2.2]octane tetrafluoroborate (C₈DABCOBF₄) as a white glassy solid.

White glassy solid; Mp 37-38 °C; ¹H NMR (CDCl₃, 400 MHz) δ 3.28 (t, ³*J* = 7.6 Hz, 6 H), 3.10-3.16 (m, 8 H), 1.66 (s, 2 H), 1.20-1.27 (m, 10 H), 0.81 (t, ³*J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 64.5, 52.0, 44.9, 31.3, 28.7, 26.0, 22.2, 21.4, 13.7; ¹⁹F NMR (CDCl₃, 377 MHz) δ -151.10, -151.15; ESI-MS calcd for C₁₄H₂₉N₂BF₄ 312.2, found 225.45 [M-BF₄]⁺, 87.1 [M-C₁₄H₂₉N₂]⁻.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2012

C₈DABCOPF₆

225.43 [M-PF₆]⁺, 145.20 [M-C₁₄H₂₉N₂]⁻.

A solution of 1-octyl-4-aza-1-azaniabicyclo[2.2.2]octane bromide (C₈DABCOBr) (1.61 mmol) in MeCN (1.0 mL), prepared at r.t. under Ar in a flame-dried round-bottomed flask, was transferred via cannula to a slurry of KPF₆ (1.64 mmol) in MeCN (1.0 mL). A 0.5 mL MeCN rinse was used to ensure complete transfer. A white precipitate formed immediately and the resulting slurry was stirred at r.t. for 20 h. Filtration followed by concentration of the filtrate in vacuo yielded an oily, white solid shown to be contaminated with bromide by a positive AgNO₃ test. The crude was partitioned between CH₂Cl₂ and H₂O, and the CH₂Cl₂ layer was washed repeatedly with H₂O until the aqueous layer gave a negative AgNO₃ test. The CH₂Cl₂ extract was dried (Na₂SO₄), subjected to filtration and concentrated in vacuo. Drying under high vacuum at 60 °C for 5 d yielded 1-octyl-4-aza-1-azaniabicyclo[2.2.2]octane hexafluorophosphate (C₈DABCOPF₆) as a white solid. White solid; Mp 161-163 °C; ¹H NMR (CDCl₃, 400 MHz) δ 3.27-3.30 (m, 6 H), 3.13-3.22 (m, 8 H), 1.70 (s, 2 H), 1.26-1.33 (m, 10 H), 0.87 (t, ³J = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 65.0, 52.5, 45.2, 31.6, 28.94, 28.92, 26.2, 22.5, 21.7, 14.0; ¹⁹F NMR (CDCl₃, 377 MHz) δ -71.02, -72.91; ³¹P NMR (CDCl₃, 161.9 MHz) δ -144.33 (septet, J_{P,F} = 712Hz); ESI-MS calcd for C₁₄H₂₉N₂PF₆ 370.36, found

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

A solution of LiN(SO₂CF₃)₂ (1.62 mmol) in MeCN (1.0 mL), prepared at r.t. under Ar in a flame-dried round-bottomed flask, was transferred via cannula to a solution of C₈DABCOBr, C₁₂DABCOBr, PEG₁₅₀MeDABCOBr (1.60 mmol) and C₈(DABCO)₂Br₂ (0.80 mmol) in MeCN (1.5 mL). A 0.5 mL MeCN rinse was used to ensure complete transfer. A white precipitate formed within 5 min and the resulting slurry was stirred at r.t. for 47 h. Filtration followed by concentration of the filtrate in vacuo yielded a colorless liquid shown to be contaminated with chloride by a positive AgNO₃ test. The crude was partitioned between CH₂Cl₂ and H₂O, and the CH₂Cl₂ layer was washed repeatedly with H₂O until the aqueous layer gave a negative AgNO₃ test. The CH₂Cl₂ extract was dried (Na₂SO₄), subjected to filtration and concentrated in vacuo. Drying under high vacuum at 60 °C for 24 h.

C₈DABCONTf₂

Yellow liquid; ¹H NMR (d₆-DMSO, 400 MHz) δ 3.24 (t, ³*J* = 7.2 Hz, 6H), 3.13-3.17 (m, 2H), 3.01 (t, ³*J* = 7.6 Hz, 6H), 1.62-1.66 (m, 2H), 1.26-1.29 (m, 10H), 0.87 (t, ³*J* = 6.4 Hz, 3H); ¹⁹F NMR (d₆-DMSO, 377 MHz) δ -78.74; ¹³C NMR (d₆-DMSO, 100.6 MHz) δ 124.2, 121.0, 117.8, 114.6, 63.2, 51.4, 44.6, 31.0, 28.4, 28.3, 25.8, 22.0, 20.9, 13.8. ESI-MS (4.8 kV) calcd for C₁₆H₂₉N₃O₄S₂F₆ 505.54, found 225.43 [M-C₂F₆NO₄S₂]⁺, 280.10 [M-C₁₄H₂₉N₂]⁻.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

C₁₂DABCONTf₂

Yellow solid; Mp. 49-50 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 3.24 (t, ³*J* = 6.8 Hz, 6H), 3.15 (t, ³*J* = 8.4 Hz, 2H), 3.01 (t, ³*J* = 7.6 Hz, 6H), 1.61-1.67 (m, 2H), 1.25 (s, 18H), 0.86 (t, ³*J* = 6.4 Hz, 3H); ¹⁹F NMR (377 MHz, d₆-DMSO) δ -78.74; ¹³C NMR (100.6 MHz, d₆-DMSO) δ 124.2, 121.0, 117.8, 114.6, 63.2, 51.4, 44.6, 31.2, 28.9, 28.8, 28.7, 28.6, 28.5, 25.8, 22.0, 20.9, 13.9; ESI-MS (4.8 kV) calcd for C₂₀H₃₇F₆N₃O₄S₂ 561.21, found 281.5 [M-C₂F₆NO₄S₂]⁺, 280.1 [M-C₁₈H₃₇N₂]⁻.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

PEG₁₅₀MeDABCONTf₂

Yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 3.92 (s, 2H), 3.64-3.66 (m, 2H), 3.59-3.62 (m, 4H), 3.51-3.53 (m, 2H), 3.43-3.47 (m, 8H), 3.34 (s, 3H), 3.18 (t, ³*J* = 7.6 Hz, 6H); ¹⁹F NMR (d₆-DMSO, 377 MHz) δ -78.74; ¹³C NMR (CDCl₃, 100.6 MHz) δ 124.4, 121.2, 118.0, 114.8, 71.6, 70.1, 70.0, 69.8, 63.8, 63.5, 58.6, 53.3, 44.9; ESI-MS (4.8 kV) C₁₅H₂₇F₆N₃O₇S₂ 539.12, found 259.4, 260.4 [M- C₂F₆NO₄S₂]⁺, 280.1 [M- C₁₃H₂₇N₂O₃]⁻.

C₈(DABCO)₂(NTf₂)₂

White solid; Mp. 158-159 °C; ¹H NMR (d₆-DMSO, 400 MHz) δ 3.25 (t, ³*J* = 6.8 Hz, 12H), 3.12-3.16 (m, 4H), 3.01 (t, ³*J* = 7.6 Hz, 12H), 1.59-1.67 (m, 4H), 1.26-1.31 (m, 8H); ¹⁹F NMR (d₆-DMSO, 377 MHz) δ -78.72; ¹³C NMR (d₆-DMSO, 100.6 MHz) δ 124.2, 121.0, 117.8, 114.6, 63.2, 51.5, 44.6, 28.4, 25.8, 21.0; ESI-MS (4.8 kV) C₂₄H₄₀F₁₂N₆O₈S₄ 896.16, found 168.4 [M-C₄F₁₂N₂O₈S₄]^{2+/2}, 616.5 [M-C₂F₆NO₄S₂]⁺, 280.1 [M-C₂₀H₄₀N₄]⁻.

3. Characterization of PEG₁₅₀MeDABCONTf₂ (¹H NMR, ¹³C NMR, ¹H-¹H COSY, ¹H-¹H NOESY and ¹H-¹³C HSQC) before and after SO₂ capture

PEG₁₅₀MeDABCONTf₂

¹H NMR (CDCl₃, 400 MHz) δ 3.92 (s, 2H), 3.64-3.66 (m, 2H), 3.59-3.62 (m, 4H), 3.51-3.53 (m, 2H), 3.43-3.47 (m, 8H), 3.34 (s, 3H), 3.18 (t, ³*J* = 7.6 Hz, 6H); ¹⁹F NMR (d₆-DMSO, 377 MHz) δ -78.74; ¹³C NMR (CDCl₃, 100.6 MHz) δ 124.4, 121.2, 118.0, 114.8, 71.6, 70.1, 70.0, 69.8, 63.8, 63.5, 58.6, 53.3, 44.9;

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

¹H NMR (CDCl₃, 400 MHz) δ 3.92 (s, 2H), 3.57-3.65 (m, 12H), 3.49-3.52 (m, 4H), 3.32 (s, 3H), 3.06 (t, ³*J* = 8Hz, 6H); ¹⁹F NMR (d₆-DMSO, 377 MHz) δ -79.04; ¹³C NMR (CDCl₃, 100.6 MHz) δ 124.1, 121.0, 117.8, 114.6, 71.3, 69.7, 69.6, 69.3, 63.5, 63.2, 58.0, 53.3, 42.2.

¹H-¹H COSY

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

¹H NMR (CDCl₃, 400 MHz)

¹³C NMR (CDCl₃, 100.6 MHz)

4. Characterization (¹H, ¹³C, ¹⁹F NMR) of other absorption systems before and after SO₂ capture

PEG₁₅₀

¹H NMR (400 MHz, d₆-DMSO) δ 4.59 (t, ³*J* = 5.2 Hz, 2 H), 3.51 (s, 4 H), 3.47 (t, ³*J* = 5.2 Hz, 4 H), 3.41 (t, ³*J* = 5.2 Hz, 4 H); ¹³C NMR (d₆-DMSO, 100.6 MHz) δ 72.3, 69.7, 60.1.

$C_8DABCONTf_2 + SO_2$

¹H NMR (d₆-DMSO, 400 MHz) δ 3.45 (s, 6H), 3.19-3.23 (m, 2H), 2.96 (t, ${}^{3}J$ = 7.6 Hz, 6H), 1.68 (s, 2H), 1.19-1.27 (m, 10H), 0.79 (t, ${}^{3}J$ = 6.4 Hz, 3H); ¹⁹F NMR (d₆-DMSO, 377 MHz) δ -78.74; ¹³C NMR (d₆-DMSO, 100.6 MHz) δ 125.7, 122.5, 119.3, 116.1, 65.6, 53.8, 43.3, 32.6, 29.9, 27.1, 23.5, 22.9, 15.2.

C₈DABCONTf₂/PEG150 (1:12) + SO₂ ¹H NMR (d₆-DMSO, 400 MHz) δ 3.38-3.48 (m, 136H), 3.20-3.24 (m, 2H), 2.99 (t, ${}^{3}J$ = 7.6 Hz, 6H), 1.67 (s, 2H), 1.20-1.28 (m, 10 H), 0.79 (t, ${}^{3}J$ = 6.4 Hz, 3H); ¹⁹F NMR (d₆-DMSO, 377 MHz) δ -79.10; ¹³C NMR (d₆-DMSO, 100.6 MHz) δ 125.7, 122.5, 119.3, 116.1, 73.1, 70.9, 65.5, 61.5, 53.8, 43.3, 32.6, 29.8, 27.1, 23.5, 22.9, 15.2.

 $C_{12}DABCONTf_2/PEG150 (1:12) + SO_2$ ¹H NMR (d₆-DMSO, 400 MHz) δ 3.45-3.49 (m, 150H), 3.38-3.41 (m, 2H), 3.01 (t, ³J = 7.6 Hz, 6H), 1.68 (s, 2H), 1.17-1.28 (m, 18H), 0.79 (t, ³J = 6.4 Hz, 3H);
¹⁹F NMR (d₆-DMSO, 377 MHz) δ -79.09; ¹³C NMR (d₆-DMSO, 100.6 MHz) δ 125.6, 122.4, 119.2, 116.0, 79.6, 79.3, 78.9, 73.1, 70.9, 65.4, 61.5, 53.5, 43.2, 32.7, 30.4, 30.3, 30.2, 29.9, 27.0, 23.5, 22.8, 15.1.

$C_8(DABCO)_2(NTf_2)_2/PEG_{150}\ (1{:}12)+SO_2$

¹H NMR (d₆-DMSO, 400 MHz) δ 3.38-3.48 (m, 156H), 3.20-3.24 (m, 4H), 2.99 (t, ³*J* = 7.6 Hz, 12H), 1.68 (s, 4H), 1.30 (s, 4H); ¹⁹F NMR (d₆-DMSO, 377 MHz) δ -79.09; ¹³C NMR (d₆-DMSO, 100.6 MHz) δ 125.5, 122.3, 119.1, 115.9, 73.1, 70.8, 65.2, 61.4, 53.1, 43.4, 29.3, 26.6, 22.6.

5. Reaction conditions screening for the synthesis of propylene sulfite from propylene oxide and SO_2 catalyzed by $PEG_{150}MeDABCOBr$

$$\overset{O}{\rightarrow} + SO_2 \xrightarrow{\mathsf{PEG}_{150}\mathsf{MeDABCOBr}} \overset{O}{\longrightarrow} \overset{O}{\xrightarrow{\mathsf{N}}} \overset{O}$$

10 mmol 10 mmol

```
propylene sulfite (PS)
```

propylene oxide (PO)

Table S1 Reaction conditions screening for the synthesis of propylene sulfite (PS) from propylene oxide (PO) and SO_2 catalyzed by $PEG_{150}MeDABCOBr^a$

•	Entry	Temperature/°C	Catalyst loading/mol%	Time/h	PO Conv./% ^b	PS Yield/% ^b		
	1	25	1	3	46	1		
	2	60	1	3	69	8		
	3	80	1	3	86	11		
	4	100	1	3	88	28		
	5	120	1	3	96	41		
	6	140	1	3	99	24		
	7	120	0.5	3	98	13		
	8	120	3	3	>99	57		
	9	120	5	3	>99	48		
	10	120	3	1	94	33		
	11	120	3	12	>99	58		
	^{<i>a</i>} Reaction conditions: PO, 10 mmol; SO2, 10 mmol. ^{<i>b</i>} Determined by GC with biphenyl as an internal standard.							

6. Characterization (NMR, GC-MS) of cyclic sulfites

4-methyl-1,3,2-dioxathiolane 2-oxide

Column chromatography on silica gel: eluting with petroleum ether/dichloromethane 3:1; Light yellow liquid. Isomer 1 (RT 3.45 min)

¹H NMR (CDCl₃, 400 MHz) δ 4.58-4.65 (m, 1H), 4.49-4.52 (m, 1H), 4.29 (t, ³J = 8.8 Hz, 1H), 1.61 (d, ³J = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 80.2, 72.8, 18.7; GC-MS: m/z (%): 122.99 (34) [M⁺], 57.03 (30) [M⁺-O₂S], 43.01 (100) [M⁺-O₃S].

Isomer 2 (RT 3.59 min)

¹H NMR (CDCl₃, 400 MHz) δ 5.07-5.15 (m, 1H), 4.69-4.72 (m, 1H), 3.85-3.89 (m, 1H), 1.43 (d, ³J = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 17.6, 71.2, 76.4; GC-MS: m/z (%): 122.99 (24) [M⁺], 57.04 (12) [M⁺-O₂S], 43.01 (100) [M⁺-O₃S]. RT: 0.41 - 10.72

Column chromatography on silica gel: eluting with petroleum ether/dichloromethane 1:3; Light yellow liquid. Isomer 1 (RT 6.74 min)

¹H NMR (CDCl₃, 400 MHz) δ 4.77-4.82 (m, 1H), 4.70 (t, ³*J* = 8 Hz, 1H), 4.49 (t, ³*J* = 7.2 Hz, 1H), 3.99-4.03 (m, 1H), 3.75-3.79 (m, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 83.7, 67.3, 60.7; GC-MS: m/z (%):106.98 (100) [M⁺-CH₃O]. **Isomer 2 (RT 7.52 min)**

¹H NMR (CDCl₃, 400 MHz) δ 5.00-5.05 (m, 1H), 4.69-4.72 (m, 1H), 4.29-4.33 (m, 1H), 3.69-3.83 (m, 2H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 80.0, 68.2, 61.1; GC-MS: m/z (%):107.01 (100) [M⁺-CH₃O].

4-phenyl-1,3,2-dioxathiolane 2-oxide

Column chromatography on silica gel: eluting with petroleum ether/dichloromethane 2:1; Light yellow liquid. **Isomer 1 (RT 8.84 min)**

 $\label{eq:hardenergy} \begin{array}{l} ^{1}\text{H NMR (CDCl}_{3}, 400\ \text{MHz}) \ \delta \ 7.40-7.50\ (m,\ 5\text{H}), \ 5.40-5.44\ (m,\ 1\text{H}), \ 4.73-4.77\ (m,\ 1\text{H}), \ 4.46-4.51\ (m,\ 1\text{H}); \ ^{13}\text{C NMR (CDCl}_{3}, \ 100.6\ \text{MHz}) \\ \delta \ 129.4, \ 129.0, \ 127.5, \ 126.6, \ 85.5, \ 71.4; \ \text{GC-MS: } m/z\ (\%): \ 183.84\ (7)\ [\text{M}^+], \ 153.99\ (100)\ [\text{M}^+\text{-OCH}_{2}], \ 126.10\ (38)\ [\text{M}^+\text{-C}_{3}\text{H}_{6}\text{O}], \ 119.16\ (16) \\ [\text{M}^+\text{-C}_{5}\text{H}_{5}], \ 105.17\ (44)\ [\text{M}^+\text{-C}_{6}\text{H}_{7}], \ 91.19\ (37)\ [\text{M}^+\text{-CHO}_{3}\text{S}], \ 78.20\ (33)\ [\text{M}^+\text{-C}_{2}\text{H}_{2}\text{O}_{3}\text{S}]. \end{array}$

Isomer 2 (RT 9.10 min)

¹H NMR (CDCl₃, 400 MHz) δ 7.35-7.45 (m, 5H), 5.93 (t, ³*J* = 6.8 Hz, 1H), 4.94-4.97 (m, 1H), 4.18-4.22 (m, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 129.5, 129.0, 126.6, 80.9, 73.5; GC-MS: m/z (%): 183.93 (<5) [M⁺], 153.99 (100) [M⁺-OCH₂], 126.10 (44) [M⁺-C₃H₆O], 119.17 (11) [M⁺-C₅H₅], 105.15 (53) [M⁺-C₆H₇], 91.18 (35) [M⁺-CHO₃S], 78.20 (57) [M⁺-C₂H₂O₃S].

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is $\ensuremath{\mathbb{C}}$ The Owner Societies 2012

4-((allyloxy)methyl)-1,3,2-dioxathiolane 2-oxide

Column chromatography on silica gel: eluting with petroleum ether/ethyl acetae 25:1; Light yellow liquid.

Isomer 1 (RT 6.97 min)

¹H NMR (CDCl₃, 400 MHz) δ 5.82-5.91 (m, 1H), 5.30 (s, 2H), 4.63-4.68 (m, 1H), 4.53-4.56 (m, 2H), 4.06 (s, ³*J* = 5.6 Hz, 2H), 3.81-3.85 (m, 1H), 3.73-3.77 (m, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 133.8, 81.0, 72.6, 70.1, 69.3; GC-MS: m/z (%): 178.94 (59) [M⁺], 121.04 (100) [M⁺-C₃H₅O], 97.18 (39) [M⁺-H₂O₃S], 81.17 (48) [M⁺-C₆H₁₀O], 39.07 (82) [M⁺-C₃H₇O₄S].

Isomer 2 (RT 7.54 min)

¹H NMR (CDCl₃, 400 MHz) δ 5.82-5.91 (m, 1H), 5.21-5.26 (m, 2H), 5.04-5.09 (m, 1H), 4.69-4.73 (m, 1H), 4.30-4.33 (m, 1H), 4.03 (d, ³*J* = 5.6 Hz, 2H), 3.59-3.62 (m, 1H), 3.51-3.55 (m, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 133.7, 117.9, 78.4, 72.5, 68.8, 68.3; GC-MS: m/z (%): 178.91 (100) [M⁺], 121.13 (19) [M⁺-C₃H₅O], 97.23 (48) [M⁺-H₂O₃S], 81.30 (29) [M⁺-C₆H₁₀O], 39.13 (30) [M⁺-C₃H₇O₄S].

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is $\ensuremath{\mathbb{C}}$ The Owner Societies 2012

4-(isopropoxymethyl)-1,3,2-dioxathiolane 2-oxide

Column chromatography on silica gel: eluting with petroleum ether/ethyl acetae 25:1; Light yellow liquid. **Isomer 1 (RT 7.92 min)**

 ${}^{1}\text{H NMR (CDCl}_{3}, 400 \text{ MHz}) \delta 3.79 - 3.84 \text{ (m, 1H)}, 3.65 - 3.70 \text{ (m, 1H)}, 3.56 - 3.63 \text{ (m, 2H)}, 3.45 - 3.52 \text{ (m, 2H)}, 3.22 \text{ (s, 2H)}, 1.13 - 1.15 \text{ (m, 6H)}; }{}^{13}\text{C NMR (CDCl}_{3}, 100.6 \text{ MHz}) \delta 21.9, 64.2, 66.5, 68.9, 70.6, 72.4, 78.7; GC-MS: m/z (\%): 180.96 (100) [M⁺].$

Isomer 2 (RT 8.44 min)

 $\label{eq:cdcl} {}^{1}\text{H NMR (CDCl}_{3}, 400 \text{ MHz}) \, \delta \, 4.99-5.04 \ (m, 2\text{H}), 4.67-4.71 \ (m, 2\text{H}), 4.48-4.56 \ (m, 2\text{H}), 4.28-4.31 \ (m, 2\text{H}), 1.13-1.15 \ (m, 6\text{H}); {}^{13}\text{C NMR} \ (\text{CDCl}_{3}, 100.6 \ \text{MHz}) \, \delta \, 81.2, 72.81, 72.78, 69.74, 69.71, 68.6, 21.8; \text{GC-MS: m/z (\%): } 180.99 \ (100) \ [\text{M}^+].$

4-(chloromethyl)-1,3,2-dioxathiolane 2-oxide

Column chromatography on silica gel: eluting with petroleum ether/dichloromethane 3:1; Light yellow liquid. **Isomer 1 (minor)**

¹H NMR (CDCl₃, 400 MHz) δ 4.72-4.75 (m, 1H), 4.63-4.65 (m, 2H), 3.88-3.92 (m, 1H), 3.75-3.80 (m, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 80.7, 70.5, 43; GC-MS: m/z (%):139.02 (40) [M⁺ - OH], 106.98 (9) [M⁺-CH₂Cl], 42.99 (100) [M⁺-SO₃Cl]. **Isomer 2 (major)**

¹H NMR (CDCl₃, 400 MHz) δ 5.10-5.15 (m, 1H), 4.77-4.82 (m, 1H), 4.43-4.47 (m, 1H), 3.64-3.68 (m, 1H), 3.50-3.55 (m, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 78.8, 69.0, 42.3; GC-MS: m/z (%):138.95 (14) [M⁺ - OH], 107.05 (11) [M⁺-CH₂Cl], 42.99 (100) [M⁺-SO₃Cl]. RT: 5.37 - 8.91

7. Reference

- 1. Y. Takenaka, T. Kiyosu, G. Mori, J.-C. Choi, N. Fukaya, T. Sakakura and H. Yasuda, *ChemSusChem*, 2012, 5, 194-199.
- 2. G. Cui, C. Wang, J. Zheng, Y. Guo, X. Luo and H. Li, *Chem. Commun.*, 2012, 48, 2633-2635.
- 3. D. Samanta, S. Sawoo, S. Patra, M. Ray, M. Salmain and A. Sarkar, J. Organomet. Chem., 2005, 690, 5581-5590.
- 4. J. Clerc, B. Schellenberg, M. Groll, A. S. Bachmann, R. Huber, R. Dudler and M. Kaiser, *Eur. J. Org. Chem.*, 2010, 2010, 3991-4003.
- 5. Y. Aoki, N. Umezawa, Y. Asano, K. Hatano, Y. Yano, N. Kato and T. Higuchi, Bioorgan. Med. Chem., 2007, 15, 7108-7115.
- 6. Z.-Z. Yang, Y.-N. Li, Y.-Y. Wei and L.-N. He, *Green Chem.*, 2011, **13**, 2351-2353.
- 7. Z.-Z. Yang, L.-N. He, C.-X. Miao and S. Chanfreau, Adv. Synth. Catal., 2010, 352, 2233-2240.