## **Supporting Information**

# CO Assisted N<sub>2</sub> Functionalization Activated by Dinuclear Hafnium Complex: A DFT Mechanisitic Exploration

Xuelu Ma,<sup>a</sup> Xin Zhang,<sup>a</sup> Wenchao Zhang,<sup>a</sup> and Ming Lei<sup>a,b</sup>\*

a. State Key Laboratory of Chemical Resource Engineering, Institute of Materia

Medica, College of Science, Beijing University of Chemical Technology, Beijing,

100029, People's Republic of China

b. State Key Laboratory of Natural and Biomimetic Drugs, Peking University,

Beijing, 100191, People's Republic of China

\* Corresponding authors:

Ming Lei

State Key Laboratory of Chemical Resource Engineering

Institute of Materia Medica, College of Science

Beijing University of Chemical Technology

Beijing, 100029

People's Republic of China

Phone: 86-10-6444-6598

Fax: 86-10-6444-6598

Email: leim@mail.buct.edu.cn

**Table S1**. Calculated imaginary frequencies of transition states at B3LYP/BSI level.

**Table S2**. Relative energies of stationary points calculated at B3LYP/BSI level including potential energies with zero-point correction, free energies and potential energy with solvent effect. (unit: kcal/mol)

**Table S3**. Energies of stationary points calculated at B3LYP/BSI level including potential energies with zero-point correction, free energies and potential energies with solvent effect. (unit: a.u.)

 Table S4. Selected Structural Parameters of the optimized Structures of Path A (Path A1 and Path A2) using simplified model (unit: Å).

**Figure S1**. The geometrical parameters of optimized structures using simplified and full models (unit: Å).

Figure S2. The vibration modes of imaginary frequencies of  $TS5-I_c$  and  $TS7-I_a$ , and the IRC analysis along  $TS5-I_c$  and  $TS7-I_a$ .

Figure S3. The comparison between full model and simplified model in the energy profiles of CO-assisted  $N_2$  cleavage and functionalization.

Table S1. Calculated imaginary frequencies of transition states at B3LYP/BSI level.

|                                   | -                   |                                    |                                    |                                    |                                   |                                    |                                    |
|-----------------------------------|---------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------------------|
| TS4-5                             | TS6-7               | TS7-I <sub>a</sub>                 | TSI <sub>a</sub> -I <sub>bA</sub>  | TS5-I <sub>c</sub>                 | TSI <sub>c</sub> - I <sub>d</sub> | TSI <sub>dA</sub> -I <sub>bA</sub> | TSI <sub>bA</sub> -12 <sub>A</sub> |
| 342.93 i                          | 408.15 i            | 311.29 i                           | 194.44 i                           | 122.04 <i>i</i>                    | 116.51 <i>i</i>                   | 199.84 i                           | 135.47 i                           |
|                                   |                     |                                    |                                    |                                    |                                   |                                    |                                    |
| TS12 <sub>A</sub> -2 <sub>A</sub> | TS8-12 <sub>A</sub> | TSI <sub>dB</sub> -I <sub>eB</sub> | TSI <sub>eB</sub> -I <sub>bB</sub> | TSI <sub>bB</sub> -12 <sub>B</sub> | TS12 <sub>B</sub> -2 <sub>B</sub> | _                                  |                                    |
| 115.55 <i>i</i>                   | 318.44 <i>i</i>     | 221.23 i                           | 36.58 i                            | 207.68 i                           | 248.51 i                          |                                    |                                    |

## The simplified model\*

\* Simplified model: all tertiary butyl and methyl groups on the ring of cyclopentadienyl ligand are simplified to hydrogen atoms.

## The full model

| <b>TS1-4</b> <sub>A1</sub>         | TS1-4 <sub>A3</sub>               | $TS4_{A2}-5_{A2}$    | TS4 <sub>A1</sub> -5 <sub>A1</sub> |                                  | TS5 <sub>A1</sub> -I <sub>c</sub> TSI <sub>c</sub> -Id <sub>A1</sub> |                         | TSIda <sub>A</sub> -Ib <sub>A</sub> | TSIb <sub>A</sub> -12 <sub>A</sub>  |  |
|------------------------------------|-----------------------------------|----------------------|------------------------------------|----------------------------------|----------------------------------------------------------------------|-------------------------|-------------------------------------|-------------------------------------|--|
| 53.54 i                            | 83.19 <i>i</i>                    | 148.52 <i>i</i>      | 302.97 i                           |                                  | 351.38 i                                                             | 148.52 <i>i</i>         | 346.54 <i>i</i>                     | 110.61 <i>i</i>                     |  |
|                                    |                                   |                      |                                    |                                  |                                                                      |                         |                                     |                                     |  |
| TS12 <sub>A</sub> -2 <sub>A</sub>  | TS5 <sub>A1</sub> -6              | TS6-7 7              | [S7-Ia                             | TSIa-Ib                          | TS4 <sub>A3</sub> -5 <sub>A</sub>                                    | A3 TS5 <sub>A3</sub> -] | le TSIc-Id <sub>C</sub>             | TSIda <sub>C</sub> -Ib <sub>C</sub> |  |
| 140.55 i                           | 54.37 <i>i</i>                    | 235.59 <i>i</i> 3    | 860.03 i                           | 172.63 i                         | 306.47 i                                                             | 327.52                  | i 71.44 i                           | 40.94 <i>i</i>                      |  |
|                                    |                                   |                      |                                    |                                  |                                                                      |                         |                                     |                                     |  |
| TSIb <sub>C</sub> -12 <sub>C</sub> | TS12 <sub>C</sub> -2 <sub>C</sub> | TSId <sub>B</sub> -I | I <sub>eB</sub> TS                 | I <sub>eB</sub> -Ib <sub>B</sub> | TSIb <sub>B</sub> -12 <sub>B</sub>                                   | TSIb <sub>B</sub> -1    | 2 <sub>B</sub> TS8-12 <sub>A</sub>  | TSId <sub>A</sub> -Ida <sub>A</sub> |  |
| 91.55 i                            | 150.72 i                          | 54.21 i              | 2                                  | 12.58 i                          | 190.42 i                                                             | 196.50                  | i 313.90 i                          | 66.87 <i>i</i>                      |  |

| TSId <sub>C</sub> -Ida <sub>C</sub> |
|-------------------------------------|
|                                     |

346.54 *i* 

**Table S2**. Relative energies of stationary points calculated at B3LYP/BSI level including potential energies with zero-point correction, free energies and potential energy with solvent effect. (unit: kcal/mol)

|                                    | Relative free energy | Relative potential energy  | Relative potential energy |
|------------------------------------|----------------------|----------------------------|---------------------------|
|                                    |                      | with zero-point correction | with solvent effect       |
| 1                                  | 0.0                  | 0.0                        | 0.0                       |
| 2 <sub>A</sub>                     | -83.2                | -105.1                     | -108.1                    |
| 4                                  | 1.8                  | -8.4                       | -8.3                      |
| 5                                  | 0.7                  | -10.0                      | -12.0                     |
| 6                                  | 0.8                  | -20.3                      | -21.9                     |
| 7                                  | 0.0                  | -21.6                      | -24.7                     |
| $I_a$                              | -74.8                | -97.3                      | -99.5                     |
| 8                                  | -61.1                | -81.6                      | -81.4                     |
| 12 <sub>A</sub>                    | -68.8                | -90.4                      | -91.3                     |
| I <sub>bA</sub>                    | -61.5                | -83.4                      | -85.3                     |
| $TSI_a$ - $Ib_A$                   | -46.6                | -69.3                      | -71.4                     |
| TS4-5                              | 9.3                  | -1.5                       | -2.1                      |
| TS6-7                              | 5.8                  | -14.8                      | -16.9                     |
| $TS7-I_a$                          | 5.4                  | -16.3                      | -19.6                     |
| TS8-12 <sub>A</sub>                | -54.5                | -77.2                      | -77.8                     |
| $TS2_A-12_A$                       | -61.6                | -83.6                      | -85.2                     |
| $TSI_{bA}$ -12 <sub>A</sub>        | -54.0                | -76.1                      | -79.2                     |
| $I_c$                              | -67.5                | -78.5                      | -79.4                     |
| $I_d$                              | -64.8                | -76.1                      | -76.6                     |
| TS5-I <sub>c</sub>                 | 0.9                  | -9.7                       | -11.5                     |
| $TSI_c-I_{dA}$                     | -50.9                | -61.3                      | -62.1                     |
| $TSI_{dA}$ - $I_{bA}$              | -49.5                | -71.0                      | -71.1                     |
| $I_{dA}$                           | -51.1                | -72.3                      | -72.1                     |
| $I_{dB}$                           | -63.8                | -82.8                      | -83.2                     |
| TSI <sub>dB</sub> -I <sub>eB</sub> | -61.8                | -80.7                      | -81.6                     |
| I <sub>eB</sub>                    | -66.2                | -85.8                      | -88.6                     |
| TSI <sub>eB</sub> -I <sub>bB</sub> | -63.2                | -84.7                      | -86.2                     |
| $I_{bB}$                           | -66.6                | -88.5                      | -90.0                     |
| $TSI_{bB}$ -12 <sub>B</sub>        | -49.6                | -71.6                      | -73.5                     |
| 12 <sub>B</sub>                    | -70.8                | -92.2                      | -93.3                     |
| $TS12_B-2_B$                       | -57.0                | -79.9                      | -82.4                     |
| 2 <sub>B</sub>                     | -79.9                | -101.5                     | -104.8                    |

## The simplified model\*

## The full model

|                                     | Relative potential energy | Relative potential<br>energy<br>with zero-point<br>correction | potential<br>rgy Relative free energy<br>o-point energy with solvent effect |        | Relative free energy<br>with solvent effect |  |
|-------------------------------------|---------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|--------|---------------------------------------------|--|
| 1                                   | 0.0                       | 0.0                                                           | 0.0                                                                         | 0.0    | 0.0                                         |  |
| <b>4</b> <sub>A1</sub>              | -7.1                      | -5.3                                                          | 5.2                                                                         | -4.3   | 6.9                                         |  |
| TS4 <sub>A1</sub> -5 <sub>A1</sub>  | -2.6                      | -0.7                                                          | 11.3                                                                        | -0.2   | 12.3                                        |  |
| 5 <sub>A1</sub>                     | -12.8                     | -10.2                                                         | 0.1                                                                         | -11.5  | 1.6                                         |  |
| TS5 <sub>A1</sub> -Ic               | -8.4                      | -6.1                                                          | 5.8                                                                         | -6.5   | 4.2                                         |  |
| Ic                                  | -63.9                     | -61.3                                                         | -52.0                                                                       | -62.3  | -52.5                                       |  |
| TSIc-Id <sub>A</sub>                | -49.0                     | -46.3                                                         | -35.9                                                                       | -46.5  | -36.0                                       |  |
| Id <sub>A</sub>                     | -64.8                     | -61.4                                                         | -50.7                                                                       | -60.3  | -51.0                                       |  |
| $\mathbf{Id}_{\mathbf{aA}}$         | -65.4                     | -60.5                                                         | -39.6                                                                       | -58.4  | -38.0                                       |  |
| TSIda <sub>A</sub> -Ib <sub>A</sub> | -46.4                     | -40.9                                                         | -17.8                                                                       | -39.0  | -17.4                                       |  |
| Ib <sub>A</sub>                     | -86.3                     | -79.6                                                         | -56.6                                                                       | -78.3  | -55.7                                       |  |
| TSIb <sub>A</sub> -12 <sub>A</sub>  | -82.3                     | -76.1                                                         | -53.3                                                                       | -75.3  | -52.8                                       |  |
| 12 <sub>A</sub>                     | -100.1                    | -93.9                                                         | -72.4                                                                       | -92.4  | -71.7                                       |  |
| TS12 <sub>A</sub> -2 <sub>A</sub>   | -94.5                     | -88.9                                                         | -67.0                                                                       | -88.0  | -66.5                                       |  |
| $2_{\rm A}$                         | -121.2                    | -114.6                                                        | -94.4                                                                       | -115.1 | -92.6                                       |  |
| 6                                   | -23.6                     | -18.9                                                         | 2.6                                                                         | -18.2  | 2.8                                         |  |
| <b>TS6-7</b>                        | -19.8                     | -14.9                                                         | 7.5                                                                         | -14.1  | 9.7                                         |  |
| 7                                   | -34.9                     | -28.7                                                         | -6.4                                                                        | -29.4  | -5.5                                        |  |
| TS7-Ia                              | -25.2                     | -20.3                                                         | 2.5                                                                         | -20.1  | 1.3                                         |  |
| Ia                                  | -83.5                     | -76.8                                                         | -54.9                                                                       | -76.4  | -54.6                                       |  |
| TSIa-Ib                             | -67.4                     | -60.9                                                         | -38.8                                                                       | -60.1  | -37.4                                       |  |
| <b>4</b> <sub>A3</sub>              | -0.3                      | 1.3                                                           | 11.4                                                                        | 2.2    | 11.3                                        |  |
| TS4 <sub>A3</sub> -5 <sub>A3</sub>  | 8.0                       | 9.5                                                           | 20.7                                                                        | 9.6    | 20.1                                        |  |
| 5 <sub>A3</sub>                     | -11.7                     | -9.0                                                          | 2.0                                                                         | -10.2  | 0.5                                         |  |
| TS5 <sub>A3</sub> -Ic               | -7.2                      | -4.4                                                          | 7.5                                                                         | -5.0   | 7.4                                         |  |
| TSIc-Id <sub>C</sub>                | -57.2                     | -55.2                                                         | -45.9                                                                       | -57.3  | -48.4                                       |  |
| Id <sub>C</sub>                     | -65.3                     | -62.1                                                         | -52.4                                                                       | -61.2  | -49.9                                       |  |
| Ida <sub>C</sub>                    | -64.3                     | -60.4                                                         | -40.6                                                                       | -59.5  | -41.3                                       |  |
| $TSIda_C-Ib_C$                      | -61.0                     | -56.1                                                         | -33.8                                                                       | -54.7  | -32.9                                       |  |
| Ib <sub>C</sub>                     | -84.4                     | -78.0                                                         | -56.7                                                                       | -77.5  | -56.1                                       |  |
| TSIb <sub>C</sub> -12 <sub>C</sub>  | -83.9                     | -77.4                                                         | -55.6                                                                       | -77.0  | -54.0                                       |  |
| 12 <sub>C</sub>                     | -99.4                     | -93.2                                                         | -71.5                                                                       | -91.9  | -70.7                                       |  |
| $TS12_C - 2_C$                      | -94.7                     | -89.2                                                         | -71.5                                                                       | -88.1  | -66.7                                       |  |
| 2 <sub>C</sub>                      | -121.3                    | -114.3                                                        | -93.1                                                                       | -114.5 | -93.9                                       |  |
| Id <sub>B</sub>                     | -88.1                     | -80.7                                                         | -57.3                                                                       | -82.7  | -63.4                                       |  |
| TSId <sub>B</sub> -I <sub>eB</sub>  | -83.1                     | -78.1                                                         | -56.6                                                                       | -77.5  | -56.7                                       |  |
| I <sub>eB</sub>                     | -91.7                     | -85.3                                                         | -63.3                                                                       | -85.8  | -64.0                                       |  |
| TS I <sub>eB</sub> -Ib <sub>B</sub> | -85.6                     | -79.0                                                         | -55.8                                                                       | -79.1  | -56.2                                       |  |
| Ib <sub>B</sub>                     | -90.6                     | -83.9                                                         | -60.8                                                                       | -82.4  | -59.7                                       |  |
| TSIb <sub>B</sub> -12 <sub>B</sub>  | -78.1                     | -72.2                                                         | -50.1                                                                       | -71.5  | -48.1                                       |  |
| 12 <sub>B</sub>                     | -102.2                    | -96.0                                                         | -74.6                                                                       | -94.1  | -73.0                                       |  |
| TS12 <sub>B</sub> -2 <sub>B</sub>   | -93.5                     | -87.8                                                         | -66.5                                                                       | -86.9  | -65.7                                       |  |

| 2 <sub>B</sub>                      | -117.8 | -111.0 | -90.1 | -111.7 | -93.0 |
|-------------------------------------|--------|--------|-------|--------|-------|
| 8                                   | -91.4  | -86.1  | -66.9 | -84.0  | -65.5 |
| <b>TS8-12</b> <sub>A</sub>          | -86.6  | -80.9  | -58.0 | -78.8  | -56.2 |
| <b>TS1-4</b> <sub>A1</sub>          | 4.2    | 4.7    | 14.4  | 5.5    | 14.3  |
| TS1-4 <sub>A3</sub>                 | 8.4    | 9.1    | 19.4  | 9.9    | 19.7  |
| TS5 <sub>A1</sub> -6                | -10.6  | -7.2   | 13.9  | -7.6   | 12.3  |
| TSId <sub>A</sub> -Id <sub>aA</sub> | -60.2  | -56.9  | -34.3 | -53.7  | -32.6 |
| $TSId_{C}$ - $Id_{aC}$              | -60.5  | -57.3  | -37.3 | -56.3  | -36.8 |

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

**Table S3**. Energies of stationary points calculated at B3LYP/BSI level including potential energies with zero-point correction, free energies and potential energies with solvent effect. (unit: a.u.)

|                                    | Free energy | Potential energy           | Potential energy    |
|------------------------------------|-------------|----------------------------|---------------------|
|                                    |             | with zero-point correction | with solvent effect |
| 1                                  | -1560.2912  | -1560.2339                 | -1560.2380          |
| $2_{\rm A}$                        | -1787.0709  | -1787.0103                 | -1787.0201          |
| 4                                  | -1673.6119  | -1673.5517                 | -1673.5561          |
| 5                                  | -1673.6136  | -1673.5543                 | -1673.5620          |
| 6                                  | -1786.9370  | -1786.8751                 | -1786.8828          |
| 7                                  | -1786.9382  | -1786.8772                 | -1786.8872          |
| $\mathbf{I}_{\mathbf{a}}$          | -1787.0575  | -1786.9978                 | -1787.0064          |
| 8                                  | -1787.0356  | -1786.9727                 | -1786.9776          |
| 12 <sub>A</sub>                    | -1787.0480  | -1786.9868                 | -1786.9934          |
| $I_{bA}$                           | -1787.0364  | -1786.9757                 | -1786.9837          |
| TSI <sub>a</sub> -Ib <sub>A</sub>  | -1787.0125  | -1786.9532                 | -1786.9617          |
| TS4-5                              | -1673.6000  | -1673.5407                 | -1673.5462          |
| TS6-7                              | -1786.9291  | -1786.8664                 | -1786.8748          |
| TS7-I <sub>a</sub>                 | -1786.9297  | -1786.8688                 | -1786.8791          |
| TS8-12 <sub>A</sub>                | -1787.0252  | -1786.9659                 | -1786.9718          |
| TS2 <sub>A</sub> -12 <sub>A</sub>  | -1787.0364  | -1786.9759                 | -1786.9836          |
| $TSI_{bA}$ -12 <sub>A</sub>        | -1787.0244  | -1786.9640                 | -1786.9740          |
| Ic                                 | -1673.7223  | -1673.6635                 | -1673.6695          |
| $I_d$                              | -1673.7180  | -1673.6597                 | -1673.6650          |
| TS5-I <sub>c</sub>                 | -1673.6132  | -1673.5538                 | -1673.5612          |
| TSI <sub>c</sub> -I <sub>dA</sub>  | -1673.6959  | -1673.6360                 | -1673.6420          |
| TSI <sub>dA</sub> -I <sub>bA</sub> | -1787.0172  | -1786.9559                 | -1786.9612          |
| $I_{dA}$                           | -1787.0197  | -1786.9747                 | -1786.9628          |
| $I_{dB}$                           | -1787.0399  | -1786.9713                 | -1786.9804          |
| TSI <sub>dB</sub> -I <sub>eB</sub> | -1787.0368  | -1786.9794                 | -1786.9778          |
| $I_{eB}$                           | -1787.0438  | -1786.9778                 | -1786.9890          |
| TSI <sub>eB</sub> -I <sub>bB</sub> | -1787.0389  | -1786.9838                 | -1786.9852          |
| $I_{bB}$                           | -1787.0444  | -1786.9569                 | -1786.9912          |
| $TSI_{bB}$ -12 <sub>B</sub>        | -1787.0173  | -1786.9896                 | -1786.9650          |
| 12 <sub>B</sub>                    | -1787.0512  | -1786.9700                 | -1786.9966          |
| $TS12_B-2_B$                       | -1787.0291  | -1787.0045                 | -1786.9791          |
| $2_{\rm B}$                        | -1787.0657  | -1786.9747                 | -1787.0148          |

#### The simplified model\*

|                                     |                  | Potential energy |             | Potential energy    | Free energy         |  |  |
|-------------------------------------|------------------|------------------|-------------|---------------------|---------------------|--|--|
|                                     | Potential energy | with zero-point  | Free energy | with solvent effect | with solvent effect |  |  |
|                                     |                  | correction       |             | with solvent encet  | with solvent effect |  |  |
| 1                                   | -2346.8947       | -2345.9926       | -2346.0814  | -2345.9992          | -2346.0876          |  |  |
| <b>4</b> <sub>A1</sub>              | -2460.2155       | -2459.3055       | -2459.3966  | -2459.3110          | -2459.4006          |  |  |
| $TS4_{A1}-5_{A1}$                   | -2460.2083       | -2459.2981       | -2459.3870  | -2459.3044          | -2459.3920          |  |  |
| 5 <sub>A1</sub>                     | -2460.2246       | -2459.3132       | -2459.4047  | -2459.3224          | -2459.4091          |  |  |
| TS5 <sub>A1</sub> -Ic               | -2460.2176       | -2459.3066       | -2459.3957  | -2459.3145          | -2459.4050          |  |  |
| Ic                                  | -2460.3061       | -2459.3946       | -2459.4878  | -2459.4034          | -2459.4953          |  |  |
| TSIc-Id <sub>A</sub>                | -2460.2823       | -2459.3708       | -2459.4621  | -2459.3782          | -2459.4689          |  |  |
| Id <sub>A</sub>                     | -2460.3074       | -2459.3948       | -2459.4858  | -2459.4003          | -2459.4928          |  |  |
| $\mathbf{Id}_{\mathbf{aA}}$         | -2573.6179       | -2572.6978       | -2572.7917  | -2572.7021          | -2572.7963          |  |  |
| TSIda <sub>A</sub> -Ib <sub>A</sub> | -2573.5875       | -2572.6666       | -2572.7568  | -2572.6712          | -2572.7634          |  |  |
| Ib <sub>A</sub>                     | -2573.6512       | -2572.7283       | -2572.8187  | -2572.7339          | -2572.8244          |  |  |
| TSIb <sub>A</sub> -12 <sub>A</sub>  | -2573.6448       | -2572.7227       | -2572.8135  | -2572.7290          | -2572.8198          |  |  |
| 12 <sub>A</sub>                     | -2573.6732       | -2572.7511       | -2572.8439  | -2572.7563          | -2572.8500          |  |  |
| TS12 <sub>A</sub> -2 <sub>A</sub>   | -2573.6642       | -2572.7430       | -2572.8352  | -2572.7493          | -2572.8416          |  |  |
| $2_{\mathrm{A}}$                    | -2573.7068       | -2572.7840       | -2572.8790  | -2572.7925          | -2572.8832          |  |  |
| 6                                   | -2573.5513       | -2572.6316       | -2572.7244  | -2572.6380          | -2572.7312          |  |  |
| <b>TS6-7</b>                        | -2573.5451       | -2572.6251       | -2572.7165  | -2572.6315          | -2572.7203          |  |  |
| 7                                   | -2573.5693       | -2572.6471       | -2572.7387  | -2572.6559          | -2572.7445          |  |  |
| TS7-Ia                              | -2573.5537       | -2572.6337       | -2572.7245  | -2572.6411          | -2572.7336          |  |  |
| Ia                                  | -2573.6468       | -2572.7237       | -2572.8160  | -2572.7307          | -2572.8228          |  |  |
| TSIa-Ib                             | -2573.6211       | -2572.6985       | -2572.7904  | -2572.7048          | -2572.7953          |  |  |
| <b>4</b> <sub>A3</sub>              | -2460.2046       | -2459.2949       | -2459.3868  | -2459.3006          | -2459.3936          |  |  |
| TS4 <sub>A3</sub> -5 <sub>A3</sub>  | -2460.1914       | -2459.2818       | -2459.3720  | -2459.2887          | -2459.3796          |  |  |
| 5 <sub>A3</sub>                     | -2460.2229       | -2459.3113       | -2459.4017  | -2459.3204          | -2459.4108          |  |  |
| TS5 <sub>A3</sub> -Ic               | -2460.2156       | -2459.3041       | -2459.3930  | -2459.3121          | -2459.3999          |  |  |
| TSIc-Id <sub>C</sub>                | -2460.2952       | -2459.3849       | -2459.4782  | -2459.3953          | -2459.4888          |  |  |
| Id <sub>C</sub>                     | -2460.3082       | -2459.3959       | -2459.4885  | -2459.4015          | -2459.4911          |  |  |
| $Ida_C$                             | -2573.6161       | -2572.6977       | -2572.7931  | -2572.7039          | -2572.8014          |  |  |
| $TSIda_C - Ib_C$                    | -2573.6108       | -2572.6908       | -2572.7824  | -2572.6961          | -2572.7882          |  |  |
| Ib <sub>C</sub>                     | -2573.6482       | -2572.7257       | -2572.8188  | -2572.7326          | -2572.8250          |  |  |
| TSIb <sub>C</sub> -12 <sub>C</sub>  | -2573.6473       | -2572.7247       | -2572.8172  | -2572.7318          | -2572.8217          |  |  |
| 12 <sub>C</sub>                     | -2573.6721       | -2572.7499       | -2572.8424  | -2572.7554          | -2572.8483          |  |  |
| $TS12_C - 2_C$                      | -2573.6646       | -2572.7435       | -2572.8358  | -2572.7493          | -2572.8420          |  |  |
| 2 <sub>C</sub>                      | -2573.7069       | -2572.7835       | -2572.8769  | -2572.7915          | -2572.8853          |  |  |
| Id <sub>B</sub>                     | -2573.6541       | -2572.7300       | -2572.8199  | -2572.7408          | -2572.8367          |  |  |
| TSId <sub>B</sub> -I <sub>eB</sub>  | -2573.6460       | -2572.7258       | -2572.8187  | -2572.7325          | -2572.8260          |  |  |
| $I_{eB}$                            | -2573.6598       | -2572.7373       | -2572.8294  | -2572.7458          | -2572.8376          |  |  |
| TS I <sub>eB</sub> -Ib <sub>B</sub> | -2573.6500       | -2572.7274       | -2572.8174  | -2572.7350          | -2572.8252          |  |  |
| Ib <sub>B</sub>                     | -2573.6581       | -2572.7350       | -2572.8255  | -2572.7403          | -2572.8308          |  |  |
| TSIb <sub>B</sub> -12 <sub>B</sub>  | -2573.6381       | -2572.7165       | -2572.8083  | -2572.7229          | -2572.8123          |  |  |
| 12 <sub>B</sub>                     | -2573.6765       | -2572.7543       | -2572.8475  | -2572.7590          | -2572.8520          |  |  |
|                                     |                  |                  |             |                     |                     |  |  |

## The full model

## Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

| TS12 <sub>B</sub> -2 <sub>B</sub>                             | -2573.6626 | -2572.7413 | -2572.8345 | -2572.7475 | -2572.8404 |
|---------------------------------------------------------------|------------|------------|------------|------------|------------|
| 2 <sub>B</sub>                                                | -2573.7013 | -2572.7783 | -2572.8720 | -2572.7870 | -2572.8839 |
| 8                                                             | -2573.6593 | -2572.7386 | -2572.8352 | -2572.7429 | -2572.8401 |
| <b>TS8-12</b> <sub>A</sub>                                    | -2573.6516 | -2572.7303 | -2572.8209 | -2572.7346 | -2572.8252 |
| <b>TS1-4</b> <sub>A1</sub>                                    | -2460.1975 | -2459.2894 | -2459.3820 | -2459.2954 | -2459.3889 |
| TS1-4 <sub>A3</sub>                                           | -2460.1907 | -2459.2825 | -2459.3740 | -2459.2884 | -2459.3803 |
| TS5 <sub>A1</sub> -6                                          | -2573.5305 | -2572.6129 | -2572.7063 | -2572.6211 | -2572.7161 |
| TSId <sub>A</sub> -Id <sub>aA</sub>                           | -2573.6096 | -2572.6905 | -2572.7831 | -2572.6946 | -2572.7876 |
| $\mathbf{TSId}_{\mathbf{C}}\text{-}\mathbf{Id}_{\mathbf{aC}}$ | -2573.6100 | -2572.6926 | -2572.7879 | -2572.6987 | -2572.7943 |

|                                    | $N^3-N^4$ | N <sup>4</sup> -Hf <sup>1</sup> | N <sup>3</sup> -Hf <sup>1</sup> | N <sup>4</sup> -Hf <sup>2</sup> | N <sup>3</sup> -Hf <sup>2</sup> | C <sup>7</sup> -Hf <sup>1</sup> | C <sup>5</sup> -Hf <sup>2</sup> | $C^7-O^8$ | $C^5-O^6$ | $C^5-C^7$ | $C^5-N^3$ | $C^7-N^4$ | O <sup>6</sup> -Hf <sup>2</sup> | O <sup>8</sup> -Hf <sup>1</sup> |
|------------------------------------|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------|-----------|-----------|-----------|-----------|---------------------------------|---------------------------------|
| 4                                  | 1.413     | 2.071                           | 2.055                           | 2.106                           | 2.089                           |                                 | 2.250                           |           | 1.148     |           | 2.467     |           | 3.391                           |                                 |
| TS4-5                              | 1.481     | 2.032                           | 2.066                           | 2.085                           | 2.210                           |                                 | 2.164                           |           | 1.183     |           | 1.731     |           | 3.345                           |                                 |
| 5                                  | 1.608     | 2.019                           | 2.052                           | 2.046                           | 2.518                           |                                 | 2.252                           |           | 1.225     |           | 1.388     |           | 3.374                           |                                 |
| 6                                  | 1.535     | 2.085                           | 2.111                           | 2.044                           | 2.495                           | 2.270                           | 2.244                           | 1.144     | 1.225     |           | 1.391     | 2.453     | 3.372                           | 3.405                           |
| TS6-7                              | 1.911     | 2.033                           | 2.094                           | 1.997                           | 2.529                           | 2.364                           | 2.270                           | 1.138     | 1.234     |           | 1.311     | 2.526     | 3.324                           | 3.490                           |
| 7                                  | 1.549     | 2.632                           | 2.098                           | 2.098                           | 2.632                           | 2.259                           | 2.259                           | 1.227     | 1.227     | 3.487     | 1.392     | 1.392     | 3.364                           | 3.364                           |
| TS7-I <sub>a</sub>                 | 1.952     | 2.599                           | 2.059                           | 2.059                           | 2.599                           | 2.228                           | 2.228                           | 1.233     | 1.233     | 3.842     | 1.348     | 1.348     | 3.311                           | 3.311                           |
| $I_a$                              | 2.892     | 2.305                           | 2.333                           | 1.973                           | 2.217                           | 2.243                           | 3.220                           | 1.223     | 1.178     | 4.947     | 1.218     | 1.324     | 4.299                           | 3.344                           |
| TSI <sub>a</sub> -I <sub>bA</sub>  | 2.993     | 2.274                           | 2.310                           | 3.025                           | 1.949                           | 2.210                           | 2.703                           | 1.228     | 1.218     | 4.509     | 1.191     | 1.349     | 2.761                           | 3.344                           |
| I <sub>bA</sub>                    | 3.164     | 2.350                           | 2.338                           | 1.969                           | 3.808                           | 2.199                           | 2.906                           | 1.230     | 1.236     | 3.968     | 1.183     | 1.357     | 2.200                           | 3.333                           |
| TS5-I <sub>c</sub>                 | 1.813     | 1.993                           | 2.051                           | 2.031                           | 2.571                           |                                 | 2.258                           |           | 1.231     |           | 1.345     |           | 3.337                           |                                 |
| I <sub>c</sub>                     | 2.736     | 1.924                           | 2.283                           | 1.923                           | 2.286                           |                                 | 3.270                           |           | 1.178     |           | 1.219     |           | 4.335                           |                                 |
| TSI <sub>c</sub> - I <sub>d</sub>  | 3.027     | 1.957                           | 2.165                           | 1.890                           | 3.475                           |                                 | 3.269                           |           | 1.201     |           | 1.201     |           | 3.461                           |                                 |
| $I_d$                              | 3.092     | 1.946                           | 2.274                           | 1.922                           | 3.794                           |                                 | 2.900                           |           | 1.230     |           | 1.192     |           | 2.279                           |                                 |
| I <sub>dA</sub>                    | 2.995     | 1.976                           | 2.422                           | 1.977                           | 3.790                           | 2.337                           | 2.910                           | 1.145     | 1.235     |           | 1.185     | 2.404     | 2.247                           |                                 |
| TSI <sub>dA</sub> -I <sub>bA</sub> | 3.130     | 2.331                           | 2.347                           | 1.969                           | 3.803                           | 2.194                           | 2.902                           | 1.231     | 1.236     | 3.960     | 1.183     | 1.363     | 2.216                           | 3.337                           |
| TSI <sub>bA</sub> -12 <sub>A</sub> | 3.330     | 3.126                           | 2.186                           | 1.912                           | 3.985                           | 2.258                           | 3.024                           | 1.251     | 1.218     | 3.386     | 1.190     | 1.328     | 2.303                           | 2.961                           |
| 12 <sub>A</sub>                    | 3.356     | 3.342                           | 22.86                           | 1.945                           | 3.998                           | 2.163                           | 3.033                           | 1.296     | 1.232     | 2.961     | 1.184     | 1.285     | 2.276                           | 2.200                           |
| TS12 <sub>A</sub> -2 <sub>A</sub>  | 4.046     | 3.714                           | 2.142                           | 2.050                           | 4.271                           | 2.578                           | 3.088                           | 1.253     | 1.32      | 2.443     | 1.245     | 1.230     | 2.004                           | 2.208                           |
| 2 <sub>A</sub>                     | 3.577     | 4.153                           | 2.042                           | 2.042                           | 4.153                           | 2.892                           | 2.892                           | 1.339     | 1.339     | 1.554     | 1.276     | 1.276     | 2.060                           | 2.060                           |

**Table S4**. Selected Structural Parameters of the optimized Structures of Path A (Path A<sub>1</sub> and Path A<sub>2</sub>) using simplified model\* (unit: Å).

## The simplified model\*



Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

#### The full model



Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is  $\ensuremath{\mathbb{O}}$  The Owner Societies 2013



Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is O The Owner Societies 2013



Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2013



**Figure S1**. The geometrical parameters of optimized structures using simplified and full models (unit: Å).



Figure S2. The vibration modes of imaginary frequencies of  $TS5-I_c$  and  $TS7-I_a$ , and the IRC analysis along  $TS5-I_c$  and  $TS7-I_a$ .



Figure S3. The comparison between full model and simplified model in the energy profiles of CO-assisted N<sub>2</sub> cleavage and functionalization.<sup>\*</sup>

<sup>\*</sup> Simplified model: all tertiary butyl and methyl groups on the ring of cyclopentadienyl ligand are simplified to hydrogen atoms. In the simplified model, A and C come to the same structure which is named by  $2_A$ . Similarly, B and D are named by  $2_B$ .